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Abstract—This paper examines the merits of modifying sparse
recovery algorithms in order to improve classification of limb
positions from electromyography (EMG) signals. In particular, we
investigate performance in cases where the signal has degraded
due to electrode shift and noise, causing classification accuracy to
break down. Sparse Representation Classification (SRC) offers
a promising approach for robust EMG classification with prior
success in other noise-prone classification problems. We hope to
demonstrate how certain dictionary-manipulating methods may
enhance already existing recovery techniques in both improving
accuracy in these cases and reducing computation time. Specifi-
cally, we shall explore dictionary augmentation, basis projection,
dictionary compression, and sparse voting schemes.

Index Terms—electromyography, myoband, prosthesis, limb
position, electrode shift, sparse recovery, SRC, ELM, EASRC,
dictionary learning, time series, machine learning

MOTIVATION

Electromyography, or EMG, is a technique for analyzing
myoelectric signals resulting from electrical activity in the
muscle during a contraction. EMG is recorded by placing
surface electrodes on the skin to measure electric potentials
from muscles while a limb contracts or moves. These signals
can be classified to decode an actual or intended limb position,
offering amputees a noninvasive means of controlling a pros-
thesis as shown in Fig. 1. This control can be implemented
with pattern recognition using traditional machine learning
algorithms for classification, such as LDA or SVM, utilizing
an EMG electrode array in real time [1-7].

However, in attempting real-time classification of limb
positions we encounter a key issue with the electrodes in the
EMG electrode array. In practice, we observe a phenomenon
called ”electrode shift”, which occurs when the electrodes
move either radially or laterally along the arm. In this case,
the classification will not be as accurate, as the myoelectric
signals vary based on the actual positions of the electrodes.
Since the EMG electrodes are measuring different groups
of muscle fibers than what was recorded when training a
given classifier, amputees observe a noticeable decrease in
classification accuracy, down to roughly 68% for SRC and
59% percent for LDA.

To address this, we look toward sparse recovery methods in-
stead. Sparse Recovery Classification, or SRC, takes advantage
of the fact that our recovered vector (indicating which class
was identified) is sparse [8] [9]. This method is quite robust
to signal degradation, and will not lose much accuracy in the
presence of noise that would break down the classification

ability of other methods. However, it too suffers from great
computational complexity requirements and does not always
produce good results. In this paper, we hope to build on this
algorithm, specifically by modifying the training dictionary in
various ways in an effort to reduce both this complexity and
its error rate due to EMG electrode shifting.

Fig. 1. General schematic for prosthesis control. EMG signals recorded
from the amputee are fed into the controller and classified as a certain
pose or gesture, outputting a control signal to the prosthesis to actuate
its fingers in accordance to the classification label.

I. CURRENT METHODS

The library of machine learning techniques for classification
is already quite extensive, as the academic community has
already devoted large efforts in this domain. We introduce
here only a couple of these techniques popular among re-
searchers in prosthesis control, particularly due to their ease of
implementation and low computational complexity. Generally,
supervised learning methods are used since the poses or mo-
tions associated with a recorded set of EMG signal patterns are
imaginable, and in some cases even sensed by a phenomena
referred to as ”Phantom Limb” sensation, by an amputee and
are observable by an able-bodied subject. Therefore the EMG
signals recorded during training are labeled.

A. Linear Discriminant Analysis

Clustering can be quite difficult in circumstances where
there is not a clear distinction between classes in higher-
dimensional space. Linear Discriminant Analysis, or LDA,
attempts to alleviate this issue by determining a subspace
projection which maximizes the distance between data clusters



while minimizing the variance within individual clusters. This
newfound separation makes it easier to classify the clusters
later on. To do so, there are two routes to be considered: within
class separation and between class separation. The equations
are:

Sw =

c∑
i=1

n∑
x∈Di

(x−mi)(x−mi)
T

Sb =

c∑
i=1

Ni(mi −m)(mi −m)T

The first equation is for within class separation where Sw

is the within class scatter matrix mi is the mean vector. For
the second equation, Sb is the between class matrix, m is the
overall mean, mi is the sample mean, and Ni is the size of
the respective classes.

One of the earliest EMG control strategies investigated
using LDA on time domain features [2]. In the EMG problem
defined above, Joseph Betthauser et al experimented with
using LDA to improve classification [7].

While LDA improves the accuracy of the classifier from
the baseline, it provides only a decent level of robustness to
electrode shift. Additionally, LDA requires extra computation
time in searching for the right transformation.

B. Support Vector Machine

One very effective method of performing binary classifi-
cation, i.e. clustering of two classes, is the support vector
machine. Support Vector Machine, or SVM, is a discriminative
classifier which attempts to determine the optimal hyperplane
which separates two classes given from training data. It
can also t can also This trained discriminator can then be
used classify incoming test data extremely quickly, making it
optimal for use in real-time prosthesis control. As with LDA,
however, the SVM classifier is unable to provide robustness
against the issue of electrode shift.

C. Extreme Adaptive Sparse Recovery Classification

Earlier, we introduced Sparse Recovery Classification
(SRC) as a more robust method of classifying data. It works
by solving the optimization problem outlined in the following
problem statement:

x̂1 = argmin‖x‖1 subject to Ax = y

taking advantage of the sparsity of the classification vector
[8] [9]. Because this l1-minimization problem searches for
solutions which are sparse, it is able to disregard solutions
which include incorrect values from other classes. Thus, SRC
acts as a very robust classification method to various types of
noise.

To solve this optimization problem, we can employ a
variety of different algorithms. One very popular method is
Orthogonal Matching Pursuit, which iteratively finds values
of the recovered vector, as well as its support. Unfortunately,
this algorithm, and other efficient SRC solvers, are still quite
slow, and do not scale well as the dictionary increases in size.

To alleviate this problem, the field of EMG classification
has instead explored the use of an enhanced version of SRC,
called Extreme Adaptive Sparse Recovery Classification, or
EASRC [10]. EASRC seeks to provide robust classification
with very little computational cost by combining the best
features of SRC together with a type of shallow, feed forward
neural network called an Extreme Learning Machine (ELM).
EASRC works as a cascading algorithmic solver, utilizing the
best features of the ELM and SRC algorithms it is based
upon. For most test cases, EASRC uses ELM, which is less
computationally complex than SRC, but also more inherently
sensitive to noise (highly detrimental to the specific problems
we are addressing). However, if the ELM fails to classify
a test vector at an adequate confidence level, the EASRC
sends this vector to the SRC algorithm for classification. This
hybrid method runs orders of magnitude faster than traditional
SRC, while still maintaining similar accuracy due to the
ELM’s use of a confidence metric for deciding when to rely
on SRC for robust classification of particularly difficult test
cases. Prior work has been done in using EASRC as a robust
method for myoelectric control in the context of limb position
classification for amputee prosthesis control [6] [7].

II. OUR METHODS

As biosignals, such as EMG, are non-stationary due to
their nature, e.g. action potentials resulting from the flux
of ions across neuron membranes are stochastic in nature,
signal processing methods are required to extract meaningful
features from an EMG signal and multiple recordings of
EMG signals for each muscle contraction must be recorded
to identify meaningful patterns via pattern recognition or
machine learning. However, since training each desired pose
or motion for a classification algorithm creates burden on the
subject by contracting the relevant muscles for each pose, the
observations available from the training data is limited. If we
measure both time domain and frequency domain features,
then the dimensionality of the classification problem is often
greater than the number of observations available. This creates
a tradeoff between using a rich amount of information to
distinguish each pose and having reliable classification. Espe-
cially for classification algorithms based on sparse recovery,
having a ”tall” training dictionary increases computation time
as well. Thus, we aim to modify the training dictionary
to increase computation speed and/or increase classification
performance.

A. Signal Processing

To compress the amount of information available in each
EMG signal recording, common signal processing methods
for EMG signal analysis are used. Since EMG is based on
the electric potentials generated from muscles contracting
at a frequency range of (0-450 Hz), EMG signal analysis
lends itself to examining time domain features and frequency
features simultaneously. Both of these sets of features are
used to examine the magnitude and frequency of contractions.
To avoid aliasing the sampled frequencies from anatomical



contractions, the EMG signal is sampled at 1000Hz. To
segment the data, the EMG signal obtained from each pose
or motion is segmented and analyzed in 200ms windows.
Once time domain and frequency domain features are extracted
from the 8 channels, each feature set is concatenated into a
single vector. For each collection of signals, the vectors are
concatenated into a dictionary that is feature scaled, where
each feature is normalized to a range of [0, 1] by subtracting
the minimum value of each feature and dividing by the
maximum value of each feature. Feature scaling improves
classification performance since the range of each time domain
feature and frequency domain features vary significantly in
magnitude.

1) Time domain: Within a given window, simple time
domain features from EMG can be used as markers for the
strength and frequency of a contraction [1] [2] [6]. These
features generally only involve elementary math operations
such as summing and division, which allows for efficient and
flexible use, as well as serving as a dense quantifiable metric
to sample. Sparse recovery-based classification methods in
particular take advantage of densely sampled data.

• Mean Absolute Value (MAV) is computed by averaging
the absolute value of the EMG signal. MAV is propor-
tional to contraction strength since more muscles are
recruited, generating more action potentials which are
sensed by the EMG electrodes.

• Variance (VAR) is computed for the EMG amplitude.
VAR is another correlate of EMG signal strength from
contraction.

• Wave Length (WL) is found by summing up the absolute
value of the EMG signal slope, between two consecutive
time samples, over the window. WL increases with both
EMG amplitude and frequency increases as contraction
strength increases.

• Zero Crossings (ZC) is found by summing up the number
of instances where the EMG amplitude crosses 0mV and
the change is above a certain threshold, which depends
on the subject but typically is on the order of 10−6

to filter out noise, within the window. ZC is linked
to muscle activation since changes in EMG frequency
are influenced by weaker and deeper muscles. One can
estimate frequency by dividing ZC by double the window
length and multiplying it by the number of windows per
second.

• Sign Slope Changes (SSC) is found by summing up the
number of instances where the slope changes sign and
the change is greater than a threshold, which varies from
subject to subject like zero crossings but is on a similar
order of magnitude of 10−6, within the window. SSC is
another correlate for muscle activation.

2) Frequency domain: To analyze frequency content of
EMG, a 128 length FFT is computed. Since the FFT is
symmetric however, only 64 components are “useful” in
containing unique information. Frequency content of EMG is
useful since muscles are comprised of different fiber types

which contract at different frequencies depending on the type
of muscle contraction being performed such as gross vs. fine
movement [1] [6].

B. Dictionary Augmentation

One approach to making the training dictionary ”fat” is by
performing recovery on an augmented dictionary using both
time domain and frequency domain features. The training data
dictionary is augmented by the identity matrix. The A matrix
is a 1064 x T matrix, so we wish to augment the matrix by a
1064 x 1064 dimension identity matrix. The recovery problem
therefore is formulated as:

y = Ax+ ε→ y =
[
A I

] [x
ε

]
Based on lecture, we aim to increase classification accuracy

by attempting to encode the ”error” in the measurement vector.
Specifically, by augmenting the training dictionary with the
identity matrix, the sparse code we recover will have both
the sparse code of the training dictionary and the code for
the error. The goal is to recover the first T samples after the
augmentation.

C. Basis Projection

Another method we attempted based on the course material
was a basis projection of the problem. A basis projection is a
simple method that attempts to reduce the mutual coherence
of the the dictionary, thereby increasing the potential for SRC
to be able to discriminate efficiently between the columns
(entries) it contains. The coherence of our dictionary is defined
as:

µ(A) = max
1≤i 6=j≤N

|〈ai,aj〉|

- the largest absolute inner product between any two normal-
ized columns (ai,aj). From class, we were able to see that
incoherence implies the RIP (Restricted Isometry Property)
holds, which in turn implies the NUP (Null Space Property)
holds, which, finally, is materially equivalent to recovery
success. Our hope in attempting this modification of traditional
SRC is to improve the accuracy of our algorithm for the
problem of pose classification by providing a more incoherent
dictionary to result in better sparse representations of test
signals. The better the sparse representations, the more robust
the classification via our algorithm becomes. The basic mathe-
matical idea of basis projection can be seen as transforming the
equation that we endeavor to solve for the recovery problem:

y = Ax⇒ Ry = RAx

Where the R matrix in question is our projection. We attempt
use of random normal, random uniform, and DCT (Discrete
Cosine Transform) matrices for our projection matrix. The
modification to SRC is applied within the EASRC framework,
meaning that it will only have an effect when the SRC portion
of the algorithm is utilized for classification in the more
difficult test cases the EASRC method faces. Due to this,
we do not expect to see leaps and bounds of improvement



(if the augmentation only operates on a subset of test cases, it
cannot dramatically impact the overall classification accuracy),
but instead look to see if the projection can aid the robust
classification of the more challenging test cases when SRC is
used.

D. Dictionary Compression

As mentioned earlier, computational complexity and run-
time (specifically, the ability to run online classification in
about 20 milliseconds) are crucial to the practical success
of our algorithm. Therefore, it may be beneficial to reduce
the size of the dictionary, as computation time for the sparse
recovery algorithm improves dramatically with even a modest
amount of dictionary compression. However, this dictionary
compression must be done in such a way that does not drasti-
cally change the span of each class in N-dimensional space to
avoid great reduction in the classification accuracy. The figure
below demonstrates compression in the N dimension.

A =

 a1 a2 . . . aN

→
 a1 a2 . . . aN ′


1) Random Subsampling: The simplest way of going about

this is random subsampling of the training vectors, reducing
the size of the dictionary in the N dimension. This simply
entails selecting a random subset of the training vectors
and testing on the resulting dictionary. Because the original
dictionary was already quite extensive (containing many data
point for each class), it is unlikely that removal of a subset
would drastically effect the classification of any particular
class by much. Because of this assumption, we can reduce the
dictionary drastically and not observe a very large reduction
in classification accuracy. While this compression method is
easy to implement and computationally simple, it does lead to
some variability in the results due to the random nature of the
process.

2) K-Means and K-Medians: In order to avoid the afore-
mentioned issue with randomness, we turn to a deterministic
algorithm for dictionary compression. Here, each class is
reduced independently, so that we end up having the same
number of training vectors for each of them (k). This is done
so that data vectors do not get mislabeled during k-means. This
method takes advantage of redundancy within classes in the
training data; this redundancy allows us to be able to represent
each class with fewer data points. It may also remove certain
outlier training points which are not representative of the class
as a whole.

Depending on the shape of the class clusters, however,
this k-means algorithm may learn means which are not even
part of the original dataset. In this case, it may be beneficial
to use k-medians, which represents clusters using a specific,
real datapoint from the class. The implementation is almost
identical, except that the clusters are updating using the median
vector from the training set instead of the mean.

3) Dimensionality Reduction: Another way to decrease the
size of the training dictionary is to reduce the dimensionality
of the individual training vectors; in other words, reduce the
dictionary size in the M dimension. This form of compression
has the added benefit of making the training matrix more
”fat”, or increases the ratio between the M and N dimension,
which improves the performance of the SRC algorithm. One
way of doing so is called Principal Component Analysis, or
PCA, which attempts to find a lower-dimensional eigenspace
of weights to represent each data point.

However, performing PCA runs the risk of losing important
information in certain dimensions. In this case, we may use
what we know about the frequency content of these EMG
signals to remove dimensions which we know are not relevant.
Although the Fourier coefficients give us signals are sampled
at 1000 Hz, the information about limb orientation mostly
resides in the frequencies between around 20 and 250 Hz. This
implies that we may crop the dictionary along that dimension
without losing information about limb position.

E. SRC Voting

Inspired by the occlusion problem formulated for face
recognition [8] , we aim to split the training dictionary
into subdictionaries for each feature and perform multiple
recoveries. The resulting class each feature is predicted to
come from is treated as a vote from each feature. The recovery
problem is now formated as follows:

y = Ax→



ytd1

...
ytd5

yft1
...

yft4


=



Atd11
. . . Atd1C

... . . .
...

Atd51 . . . Atd5C

Aft11 . . . Aft1C
... . . .

...
Aft41 . . . Aft4C





xtd1

...
xtd5

xft1
...

xft4


ytd1

= Atd1
xtd1

...
ytd5 = Atd5xtd5

yft1 = Aft1xft1
...

yft4 = Aft4xft4

Where each of the tdi and ftj are time domain and frequency
domain features, respectively. The time domain features are
simply the five domain features described earlier, and the
frequency domain features are uniform length subbands within
the FFT computed for a single window. Four frequency
subbands were found to provide the best results, leading
to nine total recovery problems being performed before the
final classification. We can attempt this for the original SRC
algorithm and the SRC branch of EASRC.



III. EXPERIMENTAL SETUP

The MiniVIE package, vMPL GUI, and Myoband (utilized
for demo of practical, technological potential) were used for
our project implementation.

The work presented in this project is based off of a
data set provided by the Johns Hopkins Neuroengineering
and Biomedical Instrumentation Laboratory. The Thakor lab
experiment, from which the data for this project was derived
utilized a 3 able-bodied, 3 amputee subject setup. The data
set consists of an experiment that quantifies how electrode
shift affects EMG classification performance for 9 poses.
Each subject wore a custom EMG electrode array with 8
channels sampled at 1000 Hz. At the start of the experiment,
each subject was asked to elicit a movement or contraction
corresponding to 9 different poses (rest as a baseline class,
hand open & hand close, wrist pronation & wrist supination,
wrist flexion & wrist extension, point & key pose) each
for a few minutes each. Once all 9 poses were trained, the
electrode array was then shifted 1 cm radially and laterally
in 1 cm increments between each training session. The max
displacement corresponded to 3 cm from the initial position
since any electrode shift corresponding to 3 cm or more, from
empirical evidence, suggests that the electrode array has poor
and unreliable contact. In total, 9 sets of data were collected
from each coordinate on a 3 cm x 3 cm grid. Since a window
of 200 ms is analyzed as a training sample and each pose is
trained for a few minutes each, the training dictionaries would
have roughly 400 samples compared to a feature space of
1064. The data is limited to this estimate, since repeating each
pose for several minutes for each electrode position creates a
burden on the subject.

For the classification task, one set of classification data is
chosen as the training set. The 8 other sets of classification data
can be treated as a collection of test vectors or measurements
”from 8 different sources” for a given training set. Since there
are 9 sets of data, this allows for 72 possible testing scenarios
for how the electrodes can shift given the constraint of 1 cm
translation on a 3 cm x 3 cm grid.

IV. RESULTS

A. Dictionary Augmentation

This method was initially explored using a single subject’s
dataset. Even though, in the results shown above, the
method implemented (SRCv) performs slightly better than
the unmodified SRC method, the improvement is not of
great enough magnitude to merit further exploration. In
addition, the computation time to perform this was excessive
(multiple hours for a single subject). Hence, we deemed
there to be insufficient motivation to apply this method
to all subjects due to the computational complexity and
limited improvement seen from the first subject. One future
implementation to potentially reduce the computation time
would be to subsample the identity matrix or zero out rows
of it. Instead of recovering x, we wish to cluster rows of
the augmented dictionary. This could reduce run time and

Fig. 2. Results for Dictionary Augmentation versus LDA, SRC, and
EASRC.

accelerate our process. However, one drawback might be
increasing the error. Nonetheless, it would yield an interesting
comparison between the two. Additionally, we declined to
investigate this method further as the realization was had that
it was unlikely we were dealing with significant noisiness of
the data in a form extractable by this type of augmentation.
Rather, the shifting of the EMG arrays is more probable to
be manifested in a far more deliberate manner than simple
added noise. Thus, we found this dictionary augmentation to
be not of use for this application.

B. Basis Projection

Fig. 3. Results for EASRC classification with different SRC projections.

We did not see any significant improvement from utilization
of any of the tested basis projections applied to the SRC
portion of the EASRC classification algorithm. While some
of the projections showed promise within a number of subsets
of the data (most significantly, the random normal projection),
none of the projections seemed to add measurable robustness
to the EASRC classification. The success or failure of the
projections to be effective at increasing the discriminatory



ability of the SRC algorithm may be partially obscured by
the fact that the fraction of test cases handled by the SRC
portion of EASRC is very small, so any impact would be
limited. However, we would have hoped that in these very
cases when SRC is applied, on the most difficult test cases
the EASRC algorithm sees, the projection might be able to
lend additional robustness. Instead, it appears that the various
projections offer little across the board in terms of improved
classification. The runtime of classification with the added
projections was largely equivalent, but did see a very slight
rise over the unmodified EASRC runtime in the case of the
inverse DCT projection, since a matrix inversion operation
was performed for each test case handled by the SRC portion
of the algorithm in that case. In the random normal and
random uniform projection cases, the runtime effect was
expectedly negligible. While it is possible that a projection
exists that could increase SRC classification robustness, we
were unsuccessful in finding one (note: while not shown in
this plot, the Bernoulli random projection was also explored,
but ultimately did not show enough promise to fully test).

C. Dictionary Compression

This method was tested on a single subject, with only
features in the time domain, as using vectors of the size of
the frequency coefficients took much longer to compute (when
performing compression) while achieving similar results to
those in the time domain. The results for running on this
single subject using either 80% or 50% compression are shown
below, in the figure below.

(a) 80% Compression (b) 50% Compression

Fig. 4. Results for EASRC classification with different levels of compres-
sion

Here, we see similar accuracies to the results both with
and without compression. This is to be expected, as removing
vectors from the training dictionary is equivalent to removing
information which could have been useful in classifying
certain outlier test points. What is promising about these
results is that we retain the accuracy of the original EASRC
algorithm without compression in both instances. This
demonstrates what we hypothesized earlier, that removing
vectors from the dictionary should not make much of an effect
on the classification itself due to redundancy. Additionally,
we found that this dictionary compression achieves its main
goal, which was reduction of computation time. In the case
where the training dictionary was reduced in size by half,

the time required to perform one classification was 0.00028
seconds on average, compared to 0.00092 seconds for regular
EASRC. This is a reduction in runtime almost double that of
our reduction in training dictionary size

D. SRC Voting

(a) SRC Voting (b) EASRC Voting

Fig. 5. Results for classification algorithms with multiple SRCs for each
feature.

Overall, voting appeared to have little benefit on the clas-
sification accuracy of the modified SRC (SRCv) and EASRC
(EASRCv) algorithms. In terms of runtime, the computational
complexity for multiple SRCs was noted to be significantly
shorter than SRC on TD5 and FFT features, with some
instances being faster by four-fold. However, we see that
accuracy falls significantly at 2 cm of shift as compared to the
other classification methods in Fig. 5a. For EASRC, EASRC
with voting (EASRCv) actually increased run time up to 5-fold
compared to the original implementation of EASRC. However,
the voting scheme maintained comparable performance with
EASRC as seen in Fig. 5b. More subjects would need to be
analyzed before any definite conclusions can be made about
the potential of this modification for increasing classification
accuracy for our problem.

V. CONCLUSION

Overall, our modifications to SRC did not improve accuracy
in any significant manner. This can be attributed to the
robustness which we already have with SRC. However, the
reductions in runtime which we noticed in performing either
voting or dictionary compression were quite significant, and
could allow for classification of limb position/orientation in
real time. Given more time, parameters could be tuned to
provide the same level of computation time improvement
with better accuracy. Better information about the types of
signals which shifted electrode arrays give us in relation
to their original, non-shifted counterparts would allow us
to better understand whether dictionary augmentation could
really work, and perhaps identify a improved basis for these
signals. Additionally, results seem to vary across different
subjects, which explains the difference in accuracies across
methods in our results sections

Future

For subsequent work, it would be beneficial to test this
algorithm with a larger amount of data and improvements



in the methods mentioned previously in the paper. For
dictionary augmentation, we could subsample random
multiple or different rows of the identity matrix. We can
then extract further outputs of the electroshift to distinguish
any significant improvements. For dictionary compression,
using the information we know about the frequency vectors
we can crop them and see if it results in any significant
improvement in computation time. For SRC voting, instead
of dividing up the dictionary into different types of features
and different bins in the frequency axis. Instead, dividing the
features by class and vote that way. This voting scheme would
benefit from identifying which features are more reliable than
others; in a similar vein, it may be more intelligent to split
the frequency spectra by the contraction frequency range
of different muscle fiber types. Also note that we can run
combinations of these methods.
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