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1 Questions

Exercise 1. What are point estimation and function estimation in the context of Machine
Learning? What is the relation between them?

Proof. The field of statistics gives us many tools that can be used to achieve the machine
learning goal of solving a task not only on the training set but also to generalize. Foundational
concepts such as parameter estimation, bias and variance are useful to formally characterize
notions of generalization, underfitting and overfitting.

Point estimation is the attempt to provide the single “best” prediction of some quantity
of interest. In general the quantity of interest can be a single parameter or a vector of
parameters in some parametric model, but it can be a whole function. In order to distinguish
estimates of parameters from their true value, our convention will be to denote a point
estimate of a parameter θ by θ̂. Let {x(1), ...,x(m)} be a set of m independent and identically
distributed (i.i.d) data points (or examples). A point estimator or statistic is any function
of the data:

θ̂m = g(x(1), ...,x(m)). (1)

Note: The definition does not require that g return a value that is close to the true θ or even
that the range of g is the same as the set of allowable values of θ. While almost any function
thus qualifies as an estimator, a good estimator is a function whose output is close to the
true underlying θ that generated the training data. We assume that the true parameter
value θ is fixed but unknown, while the point estimate θ̂ is a function of the data. Since the
data is drawn from a random process, any function of the data is random. Therefore θ̂ is a
random variable.

Point estimation can also refer to the estimation of the relationship between input and
target variables (function estimation or function approximation). We refer to these types
of point estimates as function estimators. Here we are trying to predict a variable y given
an input vector x. We assume that there is a function f(x) that describes the approximate
relationship between y and f(x). For example, we may assume that y = f(x) + ε where
ε stands for the part of y that is not predictable from x. In function estimation, we are
interested in approximating f with a model or estimate f̂ . Function estimation is really just
the same as estimating a parameter θ; the function estimator f̂ is simply a point estimator
in function space.
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Example. The linear regression example and the polynomial regression example are both
scenarios that may be interpreted either as estimating a parameterw or estimating a function
f̂ mapping from x to y.

Exercise 2. What is the bias of an estimator?

Proof. The bias of an estimator is defined as:

bias(θ̂m) = E(θ̂m)− θ (2)

where the expectation is over the data (seen as samples from a random variable) and θ is
the true underlying value of θ used to define the data generating distribution. An estimator
θ̂m is said to be unbiased if bias(θ̂m) = 0, which implies that E(θ̂m) = 0. An estimator
θ̂m is said to be asymptotically unbiased if limm→∞ bias(θ̂m) = θ, which implies that
limm→∞ E(θ̂m) = θ.

Example. Let Y1, . . . , Yn be a random sample from a population whose density is

f(y|θ) =

{
3θ3y−4, θ ≤ y
0, otherwise

where θ > 0 is a parameter. Suppose that we wish to estimate θ using the estimator
θ̂ = min{Y1, . . . , Yn}. Now, we wish to compute B(θ̂)—the bias of θ̂.

Since B(θ̂) = E(θ̂)− θ, we must first compute E(θ̂). To determine E(θ̂), we need to find
the density function of θ̂, which requires us first to find the distribution function of θ̂. There
is a “trick” for computing the distribution function of a minimum of random variables. That
is, since Y1, . . . , Yn we find

P (θ̂ > x) = P (min {Y1, . . . , Yn} > x) = P (Y1 > x, . . . , Yn > x)

= [P (Y1 > x)]n

We know the density of Y1, and so if x ≥ θ, we compute

P (Y1 > x) =

∫ ∞
x

f(y|θ)dy =

∫ ∞
x

3θ3y−4dy = θ3x−3.

Therefore, we find

P (θ̂ > x) = [P (Y1 > x)]n = θ3nx−3n for x ≥ θ

and so the distribution function for θ̂ is

F (x) = P (θ̂ ≤ x) = 1− P (θ̂ > x) = 1− θ3nx−3n

for x ≥ θ, and F (x) = 0 for x < θ. Finally, we differentiate to conclude that the density
function for θ̂ is

f(x) = F ′(x) =

{
3nθ3nx−3n−1, x ≥ θ
0, x < θ
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Now, we can determine E(θ̂) via

E(θ̂) =

∫ ∞
−∞

x · f(x)dx =

∫ ∞
θ

x · 3nθ3nx−3n−1dx = 3nθ3n
∫ ∞
θ

x−3ndx

= 3nθ3n · θ
−3n+1

3n− 1

=
3n

3n− 1
θ

Hence, the bias of θ̂ is given by

B(θ̂) = E(θ̂)− θ =
3n

3n− 1
θ − θ =

θ

3n− 1
.

Observe that θ̂ is not unbiased; that is B(θ̂) 6= 0. This particular θ̂ is not preferred.
However, it might not be possible to find any unbiased estimators of θ. Thus, we will be
forced to settle on one which is biased. Since

lim
n→∞

B(θ̂) = lim
n→∞

θ

3n− 1
= 0

θ̂ is asymptotically unbiased. If no unbiased estimators can be found, the next best thing
is to find asymptotically unbiased estimators.

Exercise 3. What is population mean and sample mean?

Proof. A sample mean is the mean of the statistical samples while a population mean
is the mean of the total population. In other words, the sample mean provides an estimate
of the population mean.

Usually the population mean is denoted as µ, while the sample mean is denoted as:

µ̂m =
1

m

m∑
i=1

x(i).

Thus, the sample mean increases its accuracy to the population mean with the increased
number of observations.

Exercise 4. What is population standard deviation and sample standard deviation?

Proof. Similarly, the unbiased sample variance is the variance of the statistical samples,
while the population variance is the variance of the total population.

Most often the population variance is denoted as σ2. The sample variance is denoted as:

σ̃2
m =

1

m− 1

m∑
i=1

(
x(i) − µ̂m

)2
.
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Exercise 5. Why population standard deviation has N degrees of freedom while sample
standard deviation has N − 1 degrees of freedom? In other words, why 1

N
inside root for

population standard deviation and 1
N−1 inside root for sample standard deviation?

Proof. To explain why we use 1
N−1 inside the root of the sample standard deviation, let’s

compare two different estimators of the variance parameter σ2 of a Gaussian distribution.
We are interested in knowing if either estimator is biased.

The first estimator of σ2:

σ̂2
m =

1

m

m∑
i=1

(
x(i) − µ̂m

)2
,

where µ̂m is the sample mean. More formally, we are interested in computing:

bias(σ̂2
m) = E[σ̂2

m]− σ2

=
m− 1

m
σ2 − σ2

= −σ
2

m
6= 0

Therefore, this is biased. So, to get the unbiased sample variance:

σ̃2
m =

1

m− 1

m∑
i=1

(
x(i) − µ̂m

)2
.

Plugging this back into the main bias equation, we get:

bias(σ̃2
m) = E[σ̃2

m]− σ2

=
( m

m− 1
E[σ̂2

m]
)
− σ2

=
m

m− 1

(m− 1

m

)
σ2 − σ2

= σ2 − σ2

= 0.

Note. Full Proof can be found here.

Thus, 1
N−1 is inside the root of the sample standard deviation (which is the square root of

the sample variance), so that it corrects the bias in the estimation of the population variance.
Note, the important change from N to N − 1 is called Bessel’s Correction.

Note. It is not possible to find an estimate of the standard deviation which is unbiased for
all population distributions, as the bias depends on the particular distribution. Much of the
following relates to estimation assuming a normal distribution.
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Exercise 6. What is the formula for calculating the standard deviation of the sample mean?

Proof. The formula for calculating the standard deviation of the sample mean:

σ̂ =

√√√√ 1

m− 1

m∑
i=1

(
x(i) − µ̂m

)2
(3)

Exercise 7. What is the variance of an estimator? What is standard error?

Proof. We should consider how much we expect the estimator to vary as a function of the
data sample. The variance of the estimator is just simply Var(θ̂), where the random variable
is the training set. Alternately, the square root of the variance is called the standard error,
denoted SE(θ).

The variance or the standard error of an estimator provides a measure of how we would
expect the estimate we compute from data to vary as we independently resample the dataset
from the underlying data generating process. When we compute any statistic using a finite
number of samples, our estimate of the true underlying parameter is uncertain, in the sense
that we could have obtained other samples from the same distribution and their statistics
would have been different. The expected degree of variation in any estimator is a source of
error that we want to quantify.

The standard error of the sample mean is given by

SE(µ̂m) =

√√√√Var
[ 1

m

m∑
i=1

x(i)
]

=
σ√
m

(4)

where σ2 is the true variance of the samples xi . The standard error is often estimated by
using an estimate of σ.

Note. Unfortunately, neither the square root of the sample variance nor the square root
of the unbiased estimator of the variance provide an unbiased estimate of the standard
deviation. Both approaches tend to underestimate the true standard deviation, but are still
used in practice. The square root of the unbiased estimator of the variance is less of an
underestimate. For large m, the approximation is quite reasonable.

Example. Let Y1, . . . , Yn be a random sample from a population whose density is

f(y|θ) =

{
3θ3y−4, θ ≤ y
0, otherwise

where θ > 0 is a parameter. Suppose that we wish to estimate θ using the estimator
θ̂ = min{Y1, . . . , Yn}. We wish to compute σθ̂— the standard error of θ̂.

Now, the standard error σθ̂ =

√
Var(θ̂) =

√
MSE(θ̂)− [B(θ̂)]2.

Let’s first calculate the MSE(θ̂). For the mean-square error, we have by definition
MSE(θ̂) = E(θ̂ − θ)2 and so

MSE(θ̂) =

∫ ∞
−∞

(x− θ)2f(x)dx =

∫ ∞
θ

(x− θ)2 · 3nθ3nx−3n−1dx
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= 3nθ3n
[∫ ∞

θ

x1−3ndx− 2θ

∫ ∞
θ

x−3ndx+ θ2
∫ ∞
θ

x−3n−1dx

]
= 3nθ3n

[
θ2−3n

3n− 2
− 2θ · θ

1−3n

3n− 1
+ θ2 · θ

−3n

3n

]
= 3nθ2

[
1

3n− 2
− 2

3n− 1
+

1

3n

]
= θ2

[
(3n− 1)(3n− 2)− 9n(n− 1)

(3n− 1)(3n− 2)

]
=

2θ2

(3n− 1)(3n− 2)
.

Now, let’s find Var(θ̂) = MSE(θ̂)− [B(θ̂)]2

=
2θ2

(3n− 1)(3n− 2)
−
[

θ

3n− 1

]2
=

θ2

3n− 1

[
2

3n− 2
− 1

3n− 1

]
=

3nθ2

(3n− 1)2(3n− 2)
.

Therefore, the standard error of θ̂ is

σθ̂ =

√
Var(θ̂) =

θ

(3n− 1)

√
3n

3n− 2
.

Exercise 8. What is a confidence interval?

Proof. A confidence interval (CI) is a type of interval estimate, computed from the statis-
tics of the observed data, that might contain the true value of an unknown population
parameter. The interval has an associated confidence level that, loosely speaking, quantifies
the level of confidence that the parameter lies in the interval. More strictly speaking, the
confidence level represents the frequency (i.e. the proportion) of possible confidence inter-
vals that contain the true value of the unknown population parameter. In other words, if
confidence intervals are constructed using a given confidence level from an infinite number of
independent sample statistics, the proportion of those intervals that contain the true value
of the parameter will be equal to the confidence level.

Note. This is important in machine learning because we often estimate the generalization
error by computing the sample mean of the error on the test set. The number of examples
in the test set determines the accuracy of this estimate. Taking advantage of the central
limit theorem, which tells us that the mean will be approximately distributed with a nor-
mal distribution, we can use the standard error to compute the probability that the true
expectation falls in any chosen interval.
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Example. For example, the 95% confidence interval centered on the mean µ̂m is

(µ̂m − 1.96SE(µ̂m), µ̂m + 1.96SE(µ̂m))

under the normal distribution with mean µ̂m and variance SE(µ̂m)2. In machine learning
experiments, it is common to say that algorithm A is better than algorithm B if the upper
bound of the 95% confidence interval for the error of algorithm A is less than the lower
bound of the 95% confidence interval for the error of algorithm B.
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