
Dimensionality Reduction / Curse of Dimensionality
Review

Akhil Vasvani

March 2019

1 Questions

Exercise 1. Why do we need dimensionality reduction techniques?

Proof. A classic unsupervised learning task is to find the “best” representation of the data.
By ‘best’ we can mean different things, but generally speaking we are looking for a represen-
tation that preserves as much information about x as possible while obeying some penalty
or constraint aimed at keeping the representation simpler or more accessible than x itself.

There are multiple ways of defining a simpler representation. Three of the most common
include lower dimensional representations, sparse representations and independent
representations. Low-dimensional representations attempt to compress as much informa-
tion about x as possible in a smaller representation. Sparse representations (Barlow, 1989;
Olshausen and Field, 1996; Hinton and Ghahramani, 1997) embed the dataset into a repre-
sentation whose entries are mostly zeroes for most inputs. The use of sparse representations
typically requires increasing the dimensionality of the representation, so that the represen-
tation becoming mostly zeroes does not discard too much information. This results in an
overall structure of the representation that tends to distribute data along the axes of the
representation, which helps better visualize the data. Independent representations attempt
to disentangle the sources of variation underlying the data distribution such that the di-
mensions of the representation are statistically independent, which speeds up the learning
algorithm.

Exercise 2. Why do we need PCA and what does it do?

Proof. Principal Component analysis (PCA) learns a representation that has lower di-
mensionality than the original input. It also learns a representation whose elements have
no linear correlation with each other. This is a first step toward the criterion of learning
representations whose elements are statistically independent. To achieve full independence,
a representation learning algorithm must also remove the nonlinear relationships between
variables.

TL;DR. PCA tries to find a lower dimensional surface such the sum of the squared projection
error is minimized. More on that here

1

https://stats.stackexchange.com/questions/32174/pca-objective-function-what-is-the-connection-between-maximizing-variance-and-m


Exercise 3. What is the difference between logistic regression and PCA?

Proof. We can generalize linear regression to the classification scenario by defining a different
family of probability distributions. If we have two classes, class 0 and class 1, then we need
only specify the probability of one of these classes. The probability of class 1 determines the
probability of class 0, because these two values must add up to 1.

The normal distribution over real-valued numbers that we used for linear regression is
parametrized in terms of a mean. Any value we supply for this mean is valid. A distribution
over a binary variable is slightly more complicated, because its mean must always be between
0 and 1. One way to solve this problem is to use the logistic sigmoid function to squash the
output of the linear function into the interval (0, 1) and interpret that value as a probability:

P (y = 1|x;θ) = σ(θ>x) (1)

This approach is known as logistic regression (a somewhat strange name since we use the
model for classification rather than regression).

The key difference between two approaches: PCA will NOT consider the response variable
but only the variance of the independent variables and logistic regression will consider
how each independent variable impact on response variable.

Figure 1: Direction of the two maximum eigenvales yield the maximum variance

2



Exercise 4. What are the two preprocessing steps that should be applied before doing PCA?

Proof. In order to use PCA to its fullest, you need to center your data (subtract data points
via the mean µ) then scale your features.

Example. Suppose you have a dataset arranged as a set of n data vectors x1 . . .xn with
each xi representing a single grouped observation of the p variables. So, the row vectors are
placed into a single matrix X of dimensions n× p.

Next, we find the empirical mean along each column j = 1, . . . , p and place the mean
values into a vector µ of dimensions p× 1:

µj =
1

n

n∑
i=1

X ij.

Now, we subtract the mean of each column from the original matrix X in order to yield
matrix B:

B = X − µ>.

Note that matrix µ> is broadcasted so that its number of rows matches matrix X.
The next step is to scale our features so their unit norm is 1 and so that each dimension

is in the same range. There are a few methods for feature scaling, but these two are the
most common:

One is mean normalization: divide each column i of matrix B by the difference between
the max value and the minimum value of i.

A =
B:,i

max(B:,i)−min(B:,i)
. (2)

The other is standardization: divide each column i of matrixB by the standard deviation
of i.

A =
B:,i√

Var[B:,i]
, (3)

which is just another way of saying

A = Var[B] =
1

n− 1
B>B, (4)

which is the unbiased sample covariance matrix associated with B. After these two steps,
PCA can now be used.

Note, that if B is composed of complex number, use conjugate transpose instead of just
transpose.

Exercise 5. Describe the curse of dimensionality with examples.

Proof. Many machine learning problems become exceedingly difficult when the number of
dimensions in the data is high. This phenomenon is known as the curse of dimensional-
ity. Of particular concern is that the number of possible distinct configurations of a set of
variables increases exponentially as the number of variables increases.

3



Reduction.png

Figure 2: As the number of relevant dimensions of the data increases (from left to right), the
number of congurations of interest may grow exponentially. (Left) In this one-dimensional
example, we have one variable for which we only care to distinguish 10 regions of interest.
With enough examples falling within each of these regions (each region corresponds to a cell
in the illustration), learning algorithms can easily generalize correctly. A straightforward way
to generalize is to estimate the value of the target function within each region (and possibly
interpolate between neighboring regions). (Center) With two dimensions, it is more dicult
to distinguish 10 dierent values of each variable. We need to keep track of up to 1010 = 100
regions, and we need at least that many examples to cover all those regions. (Right) With
three dimensions, this grows to 103 = 1, 000 regions and at least that many examples. For d
dimensions and v values to be distinguished along each axis, we seem to need O(vd) regions
and examples. This is an instance of the curse of dimensionality. Figure graciously provided
by Nicolas Chapados

4



Exercise 6. What is local constancy prior or smoothness prior or regularization?

Proof. In order to generalize well, machine learning algorithms need to be guided by prior
beliefs about what kind of function they should learn. Previously, we have seen these priors
incorporated as explicit beliefs in the form of probability distributions over parameters of
the model. More informally, we may also discuss prior beliefs as directly influencing the
function itself and only indirectly acting on the parameters via their effect on the function.
Additionally, we informally discuss prior beliefs as being expressed implicitly, by choosing
algorithms that are biased toward choosing some class of functions over another, even though
these biases may not be expressed (or even possible to express) in terms of a probability
distribution representing our degree of belief in various functions. Among the most widely
used of these implicit “priors” is the smoothness prior or local constancy prior. This prior
states that the function we learn should not change very much within a small region.

5


	Questions

