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1 Questions

Exercise 1. What is broadcasting in connection to Linear Algebra?

Proof. Typically for matrix addition, each matrix must be of the same dimension. However,
in the context of deep learning, there is a shorthand notation for adding a matrix and a
vector (the vector in this case is represented as a scalar). This vector (b for instance) is
added to each row of the matrix, which eliminates the need to define a matrix with b copied
into each row before doing the addition. This implicit copying of b to many locations is
called broadcasting.

Example. [
1 0
0 1

]
+ 1 =

[
1 0
0 1

]
+

[
1 1
1 1

]
=

[
2 1
1 2

]
In this notation, the b is portrayed as a scalar 1, but in actuality it is a matrix of of 1’s.

This shorthand is broadcasting.

Exercise 2. What are scalars, vectors, matrices, and tensors?

Proof. A scalar is just a single number or a matrix with a single entry.

Example. Let s ∈ R be the slope of the line, 4, or
[
3
]

A vector is a 1D array of numbers arranged in a particular order (a matrix with only one
column). Another way to think of vectors is identifying points in space with each element
giving the coordinate along a different axis.

Example. x =
[
x1 x2 x3 x4

]>
A matrix is a 2D array of numbers where each element is identified by two indices (ROW

then COLUMN).

Example. A =

[
3 1
1 4

]
, where A has a height of two rows and a width of two columns.

Hence, it is a shape of 2× 2. The element 3 is found at A1,1 and element 4 is found at A2,2.

A tensor is a multi-dimensional array with more than two axes denoted as A where
elements are at coordinates Ai,j,k.
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Exercise 3. What is the Hadamard product of two matrices?

Proof. The Hadamard product (or element-wise product) is a matrix containing the product
of the individual elements. It has a special symbol �. NOT TO BE CONFUSED WITH
MATRIX MULTIPLICATION.

Example. A =

[
1 1
1 1

]
and B =

[
2 2
2 2

]
, so

AB =

[
1 1
1 1

] [
2 2
2 2

]
=

[
1 · (2) + 1 · (2) 1 · (2) + 1 · (2)
1 · (2) + 1 · (2) 1 · (2) + 1 · (2)

]
=

[
4 4
4 4

]
, while

A�B =

[
1 · 2 1 · 2
1 · 2 1 · 2

]
=

[
2 2
2 2

]
Note the difference?

Exercise 4. What is an inverse matrix?

Proof. The inverse matrix of A (denoted as A−1) is defined such that:

AA−1 = A−1A = In,

where In is the identity matrix.

Exercise 5. If the inverse of a matrix exists, how to calculate it?

Proof. There are a couple ways to calculate the inverse matrix (if it exists).
Option 1: Create an augmented matrix with A and the identity matrix In (represented

as A|In). The goal would be to turn A into In using elementary row operations. In turn,
whatever we do to A, we do the same to In thereby turning In into A−1.

Example. Let’s say A =

 2 −1 0
1 3 −1
−3 0 1

, so

A|In =

 2 −1 0 1 0 0
1 3 −1 0 1 0
−3 0 1 0 0 1


Row Operation: R2 +R3 → R3

⇒

 2 −1 0 1 0 0
1 3 −1 0 1 0
−2 3 0 0 1 1


Row Operation: R3 +R1 → R1

⇒

 0 2 0 1 1 1
1 3 −1 0 1 0
−2 3 0 0 1 1
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Row Operations: 3
2
R1 −R2 → R2,

3
2
R1 −R3 → R3

⇒

 0 3 0 3
2

3
2

3
2

−1 0 1 3
2

1
2

3
2

2 0 0 3
2

1
2

1
2


Row Operations: 1

3
R1 → R1,

1
2
R3 → R3

⇒

 0 1 0 1
2

1
2

1
2

−1 0 1 3
2

1
2

3
2

1 0 0 3
4

1
4

1
4


Row Operation: R3 +R2 → R2

⇒

 0 1 0 1
2

1
2

1
2

0 0 1 9
4

3
4

7
4

1 0 0 3
4

1
4

1
4


Row Operation: R3 ↔ R2

⇒

 0 1 0 1
2

1
2

1
2

1 0 0 3
4

1
4

1
4

0 0 1 9
4

3
4

7
4


Row Operation: R1 ↔ R2

⇒

 1 0 0 3
4

1
4

1
4

0 1 0 1
2

1
2

1
2

0 0 1 9
4

3
4

7
4


Thus,

A−1 =

3
4

1
4

1
4

1
2

1
2

1
2

9
4

3
4

7
4

 =
1

4

3 1 1
2 2 2
9 3 7


Option 2: The next way involves using Minors, Cofactors, and Adjugate. First, calculate

the matrix of minors: for each element of the matrix ignore the values of the current row and
column and calculate the determinant of the remaining values. Second, apply a ”checker-
board” of minuses to the ”Matrix of Minors”. In other words, we need to change the sign
of alternate cells (+, -, +, etc.). Next, transpose all elements of the previous matrix (swap
their positions over the diagonal) (This matrix will be called the Adjugate). Finally, find
the determinant of the original matrix and multiply 1/determinant to the Adjugate matrix.

Example. Let’s use the same A matrix in the previous example. Now let’s calculate the
determinant, which will be helpful for later before calculating the matrix of minors.

det(A) =

∣∣∣∣∣∣
2 −1 0
1 3 −1
−3 0 1

∣∣∣∣∣∣ = 2

∣∣∣∣3 −1
0 1

∣∣∣∣− (−1)

∣∣∣∣ 1 −1
−3 1

∣∣∣∣+ 0

∣∣∣∣ 1 3
−3 0

∣∣∣∣
= 2((3× 1)− (−1× 0)) + (1)((1× 1)− (−1×−3)) + 0
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= 2(3) + (1− 3)

= 6− 2

= 4

Now, we know the determinant let’s solve for the matrix of minors.
Matrix of Minors = ((3× 1)− (−1× 0)) ((1× 1)− (−1×−3)) ((1× 0)− (3×−3))

((−1× 1)− (0× 0)) ((2× 1)− (−3× 0)) ((2× 0)− (−1×−3))
((−1×−1)− (0× 3)) ((2×−1)− (0×−3)) ((2× 3)− (−1× 1))

 =

 3 −2 9
−1 2 −3
1 −2 7


Matrix of Cofactors =+ − +

− + −
+ − +

⇒
 +(3) −(−2) +(9)
−(−1) +(2) −(−3)
+(1) −(−2) +(7)

 =

3 2 9
1 2 3
1 2 7


Adjugate Matrix is the transpose of the matrix of cofactors:3 2 9

1 2 3
1 2 7

> =

3 1 1
2 2 2
9 3 7


Finally, to get A−1, we multiply 1

det(A)
to the Adjugate matrix:

1

det(A)

3 1 1
2 2 2
9 3 7

 =
1

4

3 1 1
2 2 2
9 3 7

 = A−1

Exercise 6. What is the determinant of a square matrix? How is it calculated? What is
the connection of determinant to eigenvalues?

Proof. The determinant of a square matrix A, denoted as det(A), is a function mapping
matrices to real scalars. The absolute value of the determinant can be thought of as a measure
of how much multiplication by the matrix expands or contracts space. If the determinant
is 0, then space is contracted completely along at least one dimension, causing it to lose
all of its volume. If the determinant is 1, then the transformation preserves volume. The
determinant is equal to the product of all the eigenvalues of the matrix.

Example. You can calculate determinants either via Row or Column. Just remember the
signs from the matrix of cofactors!

Using the matrix A =

 2 −1 0
1 3 −1
−3 0 1

, as our example let’s start by solving for the

det(A) via the first row.
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det(A) =

∣∣∣∣∣∣
2 −1 0
1 3 −1
−3 0 1

∣∣∣∣∣∣ = 2

∣∣∣∣3 −1
0 1

∣∣∣∣− (−1)

∣∣∣∣ 1 −1
−3 1

∣∣∣∣+ 0

∣∣∣∣ 1 3
−3 0

∣∣∣∣
= 2((3× 1)− (−1× 0)) + (1)((1× 1)− (−1×−3)) + 0

= 2(3) + (1− 3)

= 6− 2

= 4

Now, let’s solve for det(A) via the second column:

det(A) =

∣∣∣∣∣∣
2 −1 0
1 3 −1
−3 0 1

∣∣∣∣∣∣ = −(−1)

∣∣∣∣ 1 −1
−3 1

∣∣∣∣+ (3)

∣∣∣∣ 2 0
−3 1

∣∣∣∣− 0

= ((1× 1)− (−1×−3)) + 3((2× 1)− (0×−3))

= (1− 3) + 3(2)

= 6− 2

= 4

Exercise 7. Discuss span and linear dependence.

Proof. Using Ax = b as a reference, we can look at the columns of A. Think of the columns
of A as specifying different directions we can travel from the origin (point specified to be 0
of all vectors), and determine how many ways there are to reach b. Therefore, we can think
of x specifying how far we should travel in each of these directions like this:

Ax =
∑
i

xiA:,i.

This is a linear combination in which each vector is multiplied by a scalar coefficient and
adding the results. The span of a set of vectors is the set of all points obtainable by linear
combination of the original vectors. (sounds sort of like a range?)

Example. Now consider A =

[
2 2
1 1

]
. Both columns (

[
2
1

]
,

[
2
1

]
) are identical, so this matrix

has the same column space or more formally put: Span(A) = Span(

[
2 2
1 1

]
) = Span(

[
2
1

]
).

The second column is a replica of the first column, so the span of A is 2 × 1. This type of
redundancy is called linear dependence. A set of vectors is linearly independent if no vector
in the set if a linear combination of the other vectors. Such as:

M =

[
2 4
1 3

]
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Exercise 8. What is Ax = b? When does Ax = b has a unique solution?

Proof. Ax = b is a system of linear equations where A ∈ Rm×n is a known matrix, b ∈ Rm

is a known vector, and x ∈ Rn is a vector of unknown variables we would like to solve
for. Observe matrix Am×n. Ax = b will have a unique solution if each column is linearly
independent and b lies in the column space of A.

Example. Say A =

1 2 3
2 −1 1
3 0 −1

 and b =

9
8
3

, then the augmented matrix A|b in row-

reduced echelon form is:  1 0 0 2
0 1 0 −1
0 0 1 3


Each of the columns is linearly independent and b lies in the column space, so Ax = b has

a unique solution in which x =

 2
−1
3

 .

Exercise 9. In Ax = b, what happens when A is fat or tall?

Proof. Now depending on the rank—the number of first nonzero entry of each row (pivots)
in a reduced row-echelon form matrix—affects the number of solutions for either a tall or fat
matrix.

Note. A matrix is in reduced row-echelon form if (1) it is in row-echelon form, (2) all
of the pivots are equal to 1, and (3) all entries in the pivot columns, except for the pivots
themselves, are equal to zero.

Arref =


1 0 4 0
0 1 2 0
0 0 0 1
0 0 0 0

 .
Here the rank[Arref ] = 3.

Now the general rule of thumb is:
1) Ax = b is inconsistent (i.e. no solution exists) if and only if rank[A] < rank[A |b].
2) Ax = b has a unique solution if and only if rank[A] = rank[A |b] = n.
3) Ax = b has infinitely many solutions if and only if rank[A] = rank[A |b] < n.

Since A ∈ Rm×n, if A is a tall matrix, then the numbers of rows m > the number of
columns n. If rank(A) < rank[A |b], then there is no solution—no linear combination will
reach the desired b—for all b. If rank(A) = n, then there is ONLY one unique solution
for every b. In laymen’s terms, if rank(A) = n, then there is one solution that is unique;
otherwise, there does not exist a solution. Note if b = 0, there there is unique (very obvious)
solution if rank(A) = n—hint: it is 0—but if rank(A) < n, there are infinitely many
solutions.
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TL;DR. For most tall matrices, there are usually no solutions.

However, if A is a fat matrix then the number of columns n > the number of rows m.
If rank[A] < m, then either there does not exist a solution or there are infinitely many
solutions. However, if rank[A] = m, there exists at least one solution for all b—which
suggests that there can be more than one solution (thereby infinitely many solutions). Note,
if b = 0 then there are infinite solutions.

TL;DR. For most fat matrices, there are usually infinitely many solutions that exist—there
are an infinite number of linear combinations to reach the desired b.

Example. Let’s look for a solution to Ax = b, where

A =

1 2 3 0
2 −1 1 0
0 0 0 0

 , x =


w
x
y
z

 , b =

 9
8
b3

⇒
1 2 3 0

2 −1 1 0
0 0 0 0



w
x
y
z

 =

 9
8
b3

 .
The augmented matrix A|b in row-reduced echelon form:

 1 0 −1 0 −5
0 1 1 0 2
0 0 0 0 b3

⇒

w
x
y
z

 =


y − 5
2− y
y
z

 =


−5 + y
2− y
y
z

 =


−5
2
0
0

+ y


1
−1
1
0

+ z


0
0
0
1

 .
Both y, z can be any R. Now, let’s pay attention to the constant b3. If b3 = 0, then
rank[A] = rank[A |b], which < n— it is also < m. So, there are an infinite number of
linear combinations to reached the desired b. On the other hand, if b3 6= 0, then rank[A] <
rank[A |b], so there does not exist a solution. Therefore, matrix A is a fat matrix.

Note, if A =

1 2 3 0
2 −1 1 0
0 0 0 1

 ⇒
 1 0 −1 0 −5

0 1 1 0 2
0 0 0 1 b3

⇒ z = b3.

So b3 ∈ R → z ∈ R, which means that any value of z can satisfy this equation. Hence,
there are an infinite number of solutions.

Example. Let’s look another example and find a solution to Ax = b, where

A =


1 2 3
2 −1 1
3 0 −1
0 0 0

 , x =

xy
z

 , b =


9
8
3
b4

 .
The augmented matrix A|b in row-reduced echelon form:

1 0 0 2
0 1 0 −1
0 0 1 3
0 0 0 b4

⇒
xy
z


If the values for b4 = 0 then rank[A] = rank[A |b], which = n. Thus, there is a unique

solution. However, b4 6= 0, then rank[A] < rank[A |b], which means there does not exist a
solution. Therefore, at most this system has one solution. Thus, A is a tall matrix.
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Exercise 10. When does an inverse of A exist?

Proof. Inverse of A (or A−1) exists if in Ax = b, there has to be n linearly independent
columns and at most one solution for every value of b. This will make the matrix a square
matrix (number of m rows = number of n columns) and nonsingular (columns are linearly
independent). Also, another check is that the determinant cannot be equal to 0.

Exercise 11. What is a norm? What is L1, L2 and L∞ norm?

Proof. A norm is a function that measures the size of vectors. Simply speaking, the norm
of a x measures the distance from the origin to the point x.

L2 norm (pronounced L-two) is known as the Euclidean Distance: ||x||2 =

√∑
i

|xi|2.

It is so commonly used in machine learning that the 2 subscript is dropped out, so it’s just
||x||. Remember, it’s the Euclidean distance from the origin to the point x.

L1 norm (pronounced L-one) is commonly referred to as Manhattan distance:

||x||1 =
∑
i

|xi|.

L∞ norm (also known as max norm) is the absolute value of the element with the largest
magnitude in the vector: ||x||∞ = max

i
|xi|.

Example. Say x =

−6
3
4

 then

L2 norm =

||x||2 =

√
(−6)2 + (3)2 + (4)2 =

√
36 + 9 + 16 =

√
61 ≈ 7.810.

L1 norm =
||x||1 = | − 6|+ |3|+ |4| = 13.

L∞ norm =
max
i
|x| = max

i=3
|x3| = 6

Exercise 12. What are the conditions a norm has to satisfy?

Proof. More formally put, a norm is any function which satisfies the following properties:
1) f(x) = 0⇒ x = 0
2) f(x+y) ≤ f(x) + f(y) (the triangle inequality)
3) ∀α ∈ R, f(αx) = |α|f(x)

Exercise 13. Why is squared of L2 norm preferred in Machine Learning than just L2 norm?
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Proof. The squared L2 norm is mathematically and computationally convenient to work with
than the L2 norm itself. For example, the derivatives of the squared L2 norm with respect to
each element of x depend only on the corresponding element of x, while all the derivatives
of the L2 norm may depend on the entire vector.

Example. From our definition,

L2 norm = ||x||2 =

√∑
i

|xi|2 , so squared of L2 norm = ||x||22 =
∑
i

|xi|2.

Now, if we take the derivative of the squared L2 norm:

∂||x||22
∂xj

=
∂

∂xj

[∑
i

|xi|2
]

=
∑
i

∂

∂xj
|xi|2 = 0 + ...+ 0 + 2|xj|+ 0 + ...+ 0 = 2|xj|

when i = j.
Now, if we take the derivative of the L2 norm:

∂||x||2
∂xj

=
∂

∂xj

[√∑
i

|xi|2
]

=
1

2

(∑
i

|xi|2
)− 1

2 ·
∑
i

∂

∂xj
|xi|2 =

|xj|√∑
i |xi|2

.

Also when i = j for the numerator.
Therefore, it is easier to rely on the squared L2 because you do not need the whole vector

to compute its gradient. You just need the specific element.

Exercise 14. When L1 norm is preferred over L2 norm?

Proof. However, in many contexts, the squared L2 norm may be undesirable because it
increases very slowly near the origin. And in several machine learning applications, it is
important to discriminate between elements that are exactly 0 and elements that are small
but nonzero. Hence, we turn to the L1 norm which grows at the same rate in all locations.
Every time an element of x moves away from 0 by ε, the L1 norm increases by ε.

Exercise 15. Can the number of nonzero elements in a vector be defined as L0 norm? If
not, why?

Proof. No, this is not correct. The number of nonzero entries in a vector is not a norm
because scaling the vector by α (property 3) does not change the number of nonzero entries.
The L1 norm is often used as a substitute for the number of nonzero entries.

Exercise 16. What is Frobenius norm?

Proof. The Frobenius norm measures the size of a matrix:

||A||F =

√∑
i,j

A2
i,j,

which is analogous to L2 norm of a vector.
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Example. Say A =

2 −1 5
0 2 1
3 1 1

, so ||A||F =

√√√√ 3∑
i=1

3∑
j=1

A2
i,j

=
√

(2)2 + (−1)2 + (5)2 + (0)2 + (2)2 + (1)2 + (3)2 + (1)2 + (1)2

=
√

4 + 1 + 25 + 4 + 1 + 9 + 1 + 1

=
√

2 · 4 + 4 · 1 + 25 + 9

=
√

3 · 4 + 34

=
√

46

Exercise 17. What is a diagonal matrix?

Proof. Diagonal matrices consist mostly of zeros and have nonzero entries only along the
main diagonal. Formally, a matrix D is diagonal if and only if Di,j = 0 for all i 6= j.

Notation: diag(v) denotes a square diagonal matrix whose diagonal entries are given by
the entries of the vector v.

Example. Say v =

 6
7
19

, so diag(v) =

6 0 0
0 7 0
0 0 19

. The identity matrix (I) is also a

diagonal matrix.

Exercise 18. Why is multiplication by diagonal matrix computationally cheap? How is the
multiplication different for square vs. non-square diagonal matrix?

Proof. Multiplication by diagonal matrix is computationally cheap because to compute
diag(v)x, we only need to scale each element xi by vi. Simply put: diag(v)x = v� x.

Example. diag(v) =

6 0 0
0 7 0
0 0 19

 and x =

1 2 3
4 5 6
7 8 9

, so

diag(v)x =

6 · 1 0 · 2 0 · 3
0 · 4 7 · 5 0 · 6
0 · 7 0 · 8 19 · 9

 =

6 0 0
0 35 0
0 0 171


However, not diagonal matrices need be square. It is possible to construct a rectangular

diagonal matrix. Non-square diagonal matrices do not have inverses but it is still possible
to multiply by them cheaply. For a non-square diagonal matrix D, the product Dx will
involve scaling each element of x, and either concatenating some zeros to the result if D is
taller than it is fat, or discarding some of the last elements of the vector if D is fatter than
it is tall.

10



Example. D is taller than it is fat. D =


1 0 0
0 4 0
0 0 −3
0 0 0

 and x =

3 2 1
6 5 4
9 8 7

, so

Dx =


1 · 3 1 · 2 1 · 1
4 · 6 4 · 5 4 · 4
−3 · 9 −3 · 8 −3 · 7

0 0 0

 =


3 2 1
24 20 16
−27 −24 −21

0 0 0

 .
Now, let’s concatenate another column of 0’s to make this a square matrix:

Dx+ 0 =


3 2 1 0
24 20 16 0
−27 −24 −21 0

0 0 0 0



Example. D is fat. D =

1 0 0 0
0 4 0 0
0 0 −3 0

 and x =


1 2 3 4
5 6 7 8
9 8 7 6
5 4 3 2

, so

Dx =

 1 · 1 1 · 2 1 · 3 1 · 4
4 · 5 4 · 6 4 · 7 4 · 8
−3 · 9 −3 · 8 −3 · 7 −3 · 6

 =

 1 2 3 4
20 24 28 32
−27 −24 −21 −18

 .
Now, let’s remove the last column to turn this into a square matrix:

→

 1 2 3
20 24 28
−27 −24 −21



Exercise 19. At what conditions does the inverse of a diagonal matrix exist?

Proof. The inverse of a diagonal matrix exists only if the matrix is square and every diagonal

entry is nonzero, and in that case: diag(v)−1 = diag([
1

v1

, ...,
1

vn
])>

Example. Say diag(v) =

3 0 0
0 5 0
0 0 7

, so diag(v)−1 =

1
3

0 0
0 1

5
0

0 0 1
7

 .
To prove that diag(v)−1 is in fact the inverse: diag(v)−1diag(v) =3 0 0

0 5 0
0 0 7

1
3

0 0
0 1

5
0

0 0 1
7

 =

1 0 0
0 1 0
0 0 1

 = I3

Note, that the diagonal matrices are symmetric.

11



Exercise 20. What is a symmetric matrix?

Proof. A symmetric matrix is any matrix that is equal to its own transpose: A = A>.

Example. A =

[
3 2
2 3

]
, so A> =

[
3 2
2 3

]
. Thus, A = A>.

Exercise 21. What is a unit vector?

Proof. A unit vector is a vector with unit norm: ||x||2 = 1

Exercise 22. When are two vectors x and y orthogonal?

Proof. A vector x and a vector y are orthogonal to each other if x>y = 0. If both vectors
have nonzero norm, this means that they are at a 90◦ angle to each other.

Note. You can represent the dot product of two vectors in terms of norms, which helps
prove when two vectors are orthogonal:

x>y = ||x||2||y||2 cos θ.

Hence, this equation holds true when θ = π
2

or 90◦, which means that vectors x,y must be
perpendicular to each other to be orthogonal.

Note. The dot product of two vectors is also called the inner product, which is denoted
as:

〈x,y〉 := x>y =
m∑
i=1

xiyi. (1)

Note the output is a scalar not a matrix.

Exercise 23. At Rn, what is the maximum possible number of orthogonal vectors with
non-zero norm?

Proof. In Rn, at most n vectors may be mutually orthogonal with nonzero norm.

Exercise 24. When are two vectors x and y orthonormal?

Proof. If two vectors are not only orthogonal but also have unit norm, then they are or-
thonormal.

Exercise 25. What is an orthogonal matrix? Why is computationally preferred?

Proof. An orthogonal matrix is a square matrix whose rows are mutually orthonormal and
whose columns are mutually orthonormal: A>A = AA> = I → A−1 = A>.

Orthogonal matrices are of interest because their inverse is very cheap to compute.
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Example. Orthogonal matrix A =

[
1 0
0 −1

]

Exercise 26. What is eigendecomposition, eigenvectors and eigenvalues?

Proof. Eigendecompostion decomposes a matrix into a set of eigenvectors and eigenvalues
(kind of like how we can break down a number into its prime factors).

An eigenvector of a square matrix A is a nonzero vector v such that multiplication by
A alters only on the scale of v: Av = λv (the scalar lambda is known as the eigenvalue
corresponding to the eigenvector).

Exercise 27. How to find eigenvalues of a matrix?

Proof. To find the eigenvalues of a matrix, we find the values of λ which satisfy the charac-
teristic equation of the matrix A: det(A− Iλ) = 0. Then, plug the solved lambda values in
to the matrix A to get the augmented matrix. Then row-reduce to find the eigenvectors.

Note: matrix A must be a square matrix.

Example. Let’s find the eigenvalues and then the eigenvectors of matrix A =

[
0 1
−2 −3

]
.

det(A− I2λ) = 0→ det(

[
−λ 1
−2 −3− λ

]
) = 0

→
∣∣∣∣−λ 1
−2 −3− λ

∣∣∣∣ = 0

(−λ)(−3− λ)− (−2)(1) = 0

(λ)(3 + λ) + 2 = 0

3λ+ λ2 + 2 = 0

(λ+ 1)(λ+ 2) = 0

λ = −1,−2

These are our eigenvalues. Now, let’s find their corresponding eigenvectors.
Using the equation Av = λv, isolate v (our eigenvector): (A − I2λ)v = 0. Plug in the

first λ value of −1 into the equation → (A− I2(−1))v = (A+ I2)v = 0

=

[
0 + 1 1
−2 −3 + 1

]
=

[
1 1
−2 −2

]
.

Row-reducing this matrix:
Row Operation: 2R1 +R2 → R2

⇒
[

1 1 0
0 0 0

]
.
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Now, [
1 1
0 0

]
v = 0[

1 1
0 0

] [
x
y

]
= 0⇒ x+ y = 0⇒ x = −y,

so v1 =

[
x
y

]
=

[
−y
y

]
= y

[
−1
1

]
⇒ k

[
−1
1

]
. To normalize vector, set k = 1√

(−1)2+(1)2
= 1√

2
.

Plug in the second λ value of −2 into the equation → (A− I2(−2))v = (A+ 2I2)v = 0

=

[
0 + 2 1
−2 −3 + 2

]
=

[
2 1
−2 −1

]
.

Row-reducing this matrix:
Row Operation: R1 +R2 → R2

⇒
[

2 1 0
0 0 0

]
.

Now, [
2 1
0 0

]
v = 0[

2 1
0 0

] [
x
y

]
= 0⇒ 2x+ y = 0⇒ x = −y

2
,

so v2 =

[
x
y

]
=

[
−y

2

y

]
= y

[
−1

2

1

]
⇒ k

[
−1

2

1

]
. To normalize vector, set k = 1√(

− 1
2

)2

+(1)2

= 2√
5

Exercise 28. Write the eigendecomposition formula for a matrix. If the matrix is real
symmetric, how will this change?

Proof. The eigendecomposition of A is given by:

A = V diag(λ)V −1, (2)

where matrix V is all the eigenvectors with one eigenvector per column: V = [v(1), ...,v(n)]
and likewise concatenating all the eigenvalues to form a vector λ = [λ1, ..., λn]>

Example. Using our previous example from above, find the eigendecomposition of A =[
0 1
−2 −3

]
.

Now, as calculated from above, both the eigenvalues (λ = −1,−2) and the eigenvec-

tors (v1 =

[
−1
1

]
,v2 =

[
−1

2

1

]
) are known. So to create matrix V ,stack the eigenvector

corresponding to the largest eigenvalue first followed by the second.

V =

[
−1 −1

2

1 1

]
.
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So,

det(V ) =

∣∣∣∣−1 −1
2

1 1

∣∣∣∣ = −1(1)− (−1

2
)(1) = −1 +

1

2
= −1

2
.

Because the determinant is nonzero, V −1 does exist. V −1 = 1
det(V )

[
1 1

2

−1 −1

]
=

[
−2 −1
2 2

]
and diag(λ) =

[
−1 0
0 −2

]
.

Plugging this all into the equation:

A = V diag(λ)V −1 =

[
−1 −1

2

1 1

] [
−1 0
0 −2

] [
−2 −1
2 2

]
=

[
−1(−1) + 0 0 + (−2)(−1

2
)

−1(1) + 0 0− 2

] [
−2 −1
2 2

]

=

[
1 1
−1 −2

] [
−2 −1
2 2

]
=

[
−2(1) + 2(1) −1(1) + 2(1)

−2(−1) + (−2)(2) (−1)(−1) + 2(−2)

]
=

[
0 1
−2 −3

]
.

Note: there are infinite eigenvectors corresponding with a specific eigenvalues. While
this may change the determinant, the important point here is that the ratio of v1 and v2
remains the same.

For real symmetric matrices,
A = QΛQ>, (3)

where Q is an orthogonal matrix composed of eigenvectors of A, and Λ is a diagonal matrix.
The eigenvalue Λi,j is associated with the eigenvector of column i of Q:,i. Because Q is an

orthogonal matrix think of A as scaling space by λi in the direction v(i).

Example. Matrix A =

[
3 2
2 3

]
is real symmetric. So, let’s find the eigendecomposition.

First, solve the characteristic equation: det(A− I2λ) = 0.

→ det(

[
3− λ 2

2 3− λ

]
) = 0→

∣∣∣∣3− λ 2
2 3− λ

∣∣∣∣ = 0

Difference of Squares: → (3− λ)2 − (2)2 = 0

(3− λ+ 2)(3− λ− 2) = 0

(5− λ)(1− λ) = 0

λ = 5, 1

These are our eigenvalues. Let’s find their corresponding eigenvectors.
λ = 5 : A− I2(5)

=

[
3− 5 2

2 3− 5

]
=

[
−2 2
2 −2

]
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Row-reducing this matrix:
Row Operation: R1 +R2 → R2

⇒
[
−2 2 0
0 0 0

]
Row Operation: −1

2
R1 → R1

⇒
[

1 −1 0
0 0 0

]
Now, remember the equation (A− I2λ)v = 0? Time to use it again:[

1 −1
0 0

]
v = 0→

[
1 −1
0 0

] [
x
y

]
= 0→ x = y.

Thus, v1 =

[
x
y

]
=

[
y
y

]
= y

[
1
1

]
= k

[
1
1

]
. To normalize vector, let k = 1√

2

λ = 1 : A− I2(1)

=

[
3− 1 2

2 3− 1

]
=

[
2 2
2 2

]
Row-reducing this matrix:
Row Operation: R1 −R2 → R2

⇒
[

2 2 0
0 0 0

]
Row Operation: 1

2
R1 → R1

⇒
[

1 1 0
0 0 0

]
[
1 1
0 0

]
v = 0→

[
1 1
0 0

] [
x
y

]
= 0→ x = −y.

Therefore, v2 =

[
x
y

]
=

[
−y
y

]
= y

[
−1
1

]
= k

[
−1
1

]
. To normalize vector, let k = 1√

2
.

Now, stacking these eigenvectors together (from highest eigenvalue to lowest),

Q =
1√
2

[
1 −1
1 1

]

Q> =
1√
2

[
1 1
−1 1

]
So,

A = QΛQ>
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⇒ A =
( 1√

2

)2 [1 −1
1 1

] [
5 0
0 1

] [
1 1
−1 1

]
=

1

2

[
5 −1
5 1

] [
1 1
−1 1

]
=

1

2

[
6 4
4 6

]

=

[
3 2
2 3

]

Exercise 29. Is the Eigendecomposition guaranteed to be unique? If not, then how do we
represent it?

Proof. While any real symmetric matrix A is guaranteed to have an eigendecomposition,
the eigendecomposition may not be unique. If any two or more eigenvectors share the same
eigenvalue, then any set of orthogonal vectors lying in their span are also eigenvectors with
that eigenvalue, and we could equivalently choose a Q using those eigenvectors instead. By
convention, we usually sort the entries of Λ in descending order. Under this convention, the
eigendecomposition is unique only if all of the eigenvalues are unique.

Exercise 30. What are positive definite, negative definite, positive semi definite and nega-
tive semi definite matrices?

Proof. A matrix whose eigenvalues are all positive is called positive definite. A matrix
whose eigenvalues are all positive or zero-valued is called positive semidefinite. Likewise, if
all eigenvalues are negative, the matrix is negative definite, and if all eigenvalues are negative
or zero-valued, it is negative semidefinite.

Positive semidefinite matrices are interesting because they guarantee that ∀x,x>Ax ≥ 0.
Positive definite matrices additionally guarantee that x>Ax = 0,→ x = 0.

Note. So why do we care?
Imagine, there is a vector z, which will have a certain direction. When we multiply

matrix M with z, z no longer points in the same direction. Therefore, the direction of z is
transformed by M . Would it not be nice in an abstract sense to be able to multiply some
matrices multiple times and they will not change the sign of the vectors? If you multiply
positive numbers to other positive numbers, it does not change its sign. So let’s apply the
same logic to Linear Algebra using the eigenvalues.

Example. Say, we have a matrix A and eigenvalues λ. Now, each eigenvector of A can be
represented by vector x:

Ax = λx→ x>Ax = x>λx.

Now using norms instead of dot products,

x>λx = ||x||2||λx||2 cos θ = λ||x||22 cos(0) = λ||x||22.

And,
x>Ax = ||x||2||Ax||2 cos θ

Plugging this all back in, we have:

⇒ ||x||2||Ax||2 cos θ = λ||x||22
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⇒ λ = (||x||22)−1||x||2||Ax||2 cos θ.

On an intuitive note, ifA is a positive definite matrix, the new direction will always point
in the “same general” direction (here “same general” means θ < π

2
). A is “semi” definite, if

θ ≤ π
2
. However, it will reverse the original direction if θ ≥ π

2
.

Now how does this relate to eigenvalues? Well, if we assume ||x||2||Ax||2 cos θ > 0 and
||x||22 > 0, then eigenvalues (λ) must be greater than 0! So, a positive definite matrix must
have positive eigenvalues.

If A =

[
3 2
2 3

]
, then our eigenvalues (λ) = 5,1. So, matrix A is a positive definite matrix.

If A =

[
0 1
−2 −3

]
, then since our eigenvalues (λ) = -1,-2. So, therefore, matrix A is a

negative definite matrix.

Note. Positive definite matrices are extremely useful tools. For example, if the Hessian of
a function is a positive definite matrix then the function is convex. Otherwise if the Hessian
is a negative definite matrix, then the function is non-convex.

Exercise 31. What is Singular Value Decomposition? Why do we use it? Why not just use
ED?

Proof. The singular value decomposition (SVD) provides another way to factorize a ma-
trix, into singular vectors and singular values. Like eigendecompostion (ED), the SVD allows
one to discover some of the same kind of information. However, the SVD is generally more
applicable. Every real matrix has a singular value decomposition, but the same is not true of
the eigenvalue decomposition. For example, if a matrix is not square, the eigendecomposition
is not defined, and we must use a singular value decomposition instead.

Exercise 32. Given a matrix A, how will you calculate its Singular Value Decomposition?

Proof. Suppose that A is an m×n matrix. Then U is defined to be an m×m matrix, D to
be an m× n matrix, and V to be an n× n matrix, then the Singular Value Decomposition
(SVD):

A = UDV > (4)

Note, matrices U and V are both defined to be orthogonal matrices and matrix D is defined
to be a diagonal matrix (note it does not have to be a square).

Example. Say matrix A =

[
2 2
1 1

]
, so A> =

[
2 1
2 1

]
.

A>A =

[
2 1
2 1

] [
2 2
1 1

]
=

[
5 5
5 5

]
, AA> =

[
2 2
1 1

] [
2 1
2 1

]
=

[
8 4
4 2

]
.

So,

det(A>A− I2λ) =

∣∣∣∣5− λ 5
5 5− λ

∣∣∣∣ = 0→ (5− λ)2 − 25 = 0→ λ2 − 10λ = 0

→ λ = 0, 10
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det(AA> − I2λ) =

∣∣∣∣8− λ 4
4 2− λ

∣∣∣∣ = 0→ (8− λ)(2− λ)− 16 = 0→ λ2 − 10λ = 0

→ λ = 0, 10

These are our eigenvalues. Let’s find their corresponding eigenvectors.
λ = 10: AA> − I2(10)

→
[

8− 10 4 0
4 2− 10 0

]
=

[
−2 4 0
4 −8 0

]
Row Operation: 2R1 +R2 → R2

→
[
−2 4 0
0 0 0

]
Row Operation: −1

2
R1 → R1

→
[

1 −2 0
0 0 0

]
⇒
[
1 −2
0 0

] [
x
y

]
⇒ x = 2y.

So, v1 =

[
x
y

]
=

[
2y
y

]
= y

[
2
1

]
= k

[
2
1

]
. To normalize vector, set k = 1√

5
.

λ = 0: AA> − I2(0)

→
[

8− 0 4 0
4 2− 0 0

]
=

[
8 4 0
4 2 0

]
Row Operation: 1

2
R1 −R2 → R2

→
[

8 4 0
0 0 0

]
Row Operation: 1

4
R1 → R1

→
[

2 1 0
0 0 0

]
⇒
[
2 1
0 0

] [
x
y

]
⇒ x = −y

2
.

So, v2 =

[
x
y

]
=

[
−y

2

y

]
= y

[
−1

2

1

]
= k

[
−1

2

1

]
. To normalize, set k = 2√

5
.

λ = 10: A>A− I2(10)

→
[

5− 10 5 0
5 5− 10 0

]
=

[
−5 5 0
5 −5 0

]
Row Operation: R1 +R2 → R2

→
[
−5 5 0
0 0 0

]
Row Operation: −1

5
R1 → R1
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→
[

1 −1 0
0 0 0

]
⇒
[
1 −1
0 0

] [
x
y

]
⇒ x = y.

So, v1 =

[
x
y

]
=

[
y
y

]
= y

[
1
1

]
= k

[
1
1

]
. To normalize, set k = 1√

2
.

λ = 0: A>A− I2(0)

→
[

5− 0 5 0
5 5− 0 0

]
=

[
5 5 0
5 5 0

]
Row Operation: R1 −R2 → R2

→
[

5 5 0
0 0 0

]
Row Operation: 1

5
R1 → R1

→
[

1 1 0
0 0 0

]
⇒
[
1 1
0 0

] [
x
y

]
⇒ x = −y.

So, v2 =

[
x
y

]
=

[
−y
y

]
= y

[
−1
1

]
= k

[
−1
1

]
. To normalize, set k = 1√

2
.

Now, since A = UΣV > → A> = (UΣV >)> = V Σ>U>

⇒ A>A = V Σ>U>UΣV > = V Σ>ΣV > = V Σ2V >.

⇒ AA> = UΣV >V Σ>U> = UΣ>ΣU> = UΣ2U>.

Now, since we calculated 2 pairs of eigenvalues for AA> and A>A, we know which
respective matrices we were building. ΣΣ> or Σ>Σ is just the diagonal matrix of eigenvalues
for A>A and AA>

⇒
[
10 0
0 0

]
⇒ Σ =

[√
10 0

0
√

0

]
.

Therefore, U = 1√
5

[
2 −1
1 2

]
and V = 1√

2

[
1 −1
1 1

]
→ V > = 1√

2

[
1 1
−1 1

]
.

⇒ 1√
10

[
2 −1
1 2

] [√
10 0
0 0

] [
1 1
−1 1

]
= A

Note. Now, what does this show intuitively? More importantly, what does this mean? Think
of the A as a type of linear transformation. Therefore, SVD breaks down the transformation
into three simple steps:

1) The initial rotation (or reflection) V >.
2) The Σ matrix has to do with rescaling vertically or horizontally (really in any dimen-

sion depending on the matrix).
3) The final rotation (or reflection) U .
By looking at the SVD, we can tell which matrix has a significant impact on transforming

the matrix and how much as well.
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If we apply that intuition to this problem, we explain break up the transformation:

V > = 1√
2

[
1 1
−1 1

]
= 1√

2

([1 0
0 1

]
+

[
0 1
−1 0

])
= 1√

2
(I2 +R(θ = 270◦)).

So V > boils down to summing the initial vector with the rotation of the initial vector by
270◦.

Σ =

[√
10 0
0 0

]
→ Σ basically scales the x coordinate by

√
10.

U = 1√
5

[
2 1
−1 2

]
= 1√

5

([2 0
0 2

]
+

[
0 −1
1 0

])
= 1√

5
(2I2 +R(θ = 90◦)).

U boils down to summing two times the initial vector with the rotation of the initial
vector by 90◦.

Exercise 33. What are singular values, left singulars, and right singulars?

Proof. The elements along the diagonal of D are known as the singular values of the
matrix A. The columns of U are known as the left-singular vectors. The columns of V
are known as as the right-singular vectors.

Exercise 34. What is the connection of Singular Value Decomposition of A with functions
of A?

Proof. We can actually interpret the singular value decomposition of A in terms of the
eigendecomposition of functions of A. The left-singular vectors of A are the eigenvectors of
AA>. The right-singular vectors of A are the eigenvectors of A>A. The non-zero singular
values of A are the square roots of the eigenvalues of A>A. The same is true for AA>.

Exercise 35. Why are singular values always non-negative?

Proof. Let’s assume matrix A has real entries—otherwise consider AHA—then A>A is
positive semidefinite because it is an inner product. One of the properties of an inner
product is that for any vector u, 〈u,u〉 ≥ 0 or 〈u,u〉 = 0 if and only if u = 0. Now, since
A>A is matrix (and we want a vector), if v is a nonzero vector in Rn, then we have

〈A>Av,v〉 := (A>Av)>v = v>A>Av

= 〈Av,Av〉 ≥ 0,∀v.

Therefore, the eigenvalues of A>A are non-negative, and the singular values of A are
the square roots of the eigenvalues.

Exercise 36. What is the Moore Penrose pseudo inverse and how to calculate it?

Proof. The Moore Penrose pseudo inverse definition is:

A+ = lim
α→

(A>A+ αI)−1A>. (5)
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Practical algorithms for computing the pseudo inverse are not based on this definition, but
rather the formula:

A+ = V D+U> (6)

where U , D, and V are the singular value decomposition of A. The pseudo inverse D+ of a
diagonal matrix D is obtained by taking the reciprocal of its non-zero elements then taking
the transpose of the resulting matrix.

Example. Say A =

 1 0
0 1√
3 0

, so → A> =

[
1 0

√
3

0 1 0

]
.

A>A =

[
1 0

√
3

0 1 0

] 1 0
0 1√
3 0

 =

[
4 0
0 1

]
, AA> =

 1 0
0 1√
3 0

[1 0
√

3
0 1 0

]
=

 1 0
√

3
0 1 0√
3 0 3

 .
So,

det(A>A− I2λ) =

∣∣∣∣4− λ 0
0 1− λ

∣∣∣∣ = 0→ (4− λ)(1− λ)− 0 = 0→ λ = 1, 4

det(AA> − I2λ) =

∣∣∣∣∣∣
1− λ 0

√
3

0 1− λ 0√
3 0 3− λ

∣∣∣∣∣∣ = 0→ (1−λ)[(1−λ)(3−λ)−0]−0+
√

3[0−
√

3(1−λ)] = 0

(1− λ)[(1− λ)(3− λ)]− 3(1− λ) = 0

(1− λ)[(1− λ)(3− λ)− 3] = 0

(1− λ)[3− λ− 3λ+ λ2 − 3] = 0

(1− λ)[−4λ+ λ2] = 0

(1− λ)(−λ)(4λ) = 0

→ λ = 0, 1, 4

These are our eigenvalues. Let’s find their corresponding eigenvectors.
λ = 4: AA> − I3(4)

→

 (1− 4) 0
√

3 0
0 (1− 4) 0 0√
3 0 (3− 4) 0

 =

 −3 0
√

3 0
0 −3 0 0√
3 0 −1 0


Row Operation: −

√
3R3 −R1 → R1,−1

3
R2 → R2

⇒

 0 0 0 0
0 1 0 0√
3 0 −1 0
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Row Operation: R3 ↔ R1

⇒

 √3 0 −1 0
0 1 0 0
0 0 0 0

⇒
√3 0 −1

0 1 0
0 0 0

xy
z

 = 0

⇒ x
√

3− z = 0⇒ z = x
√

3

⇒ y = 0.

Thus, v1 =

xy
z

 =

 x
0

x
√

3

 = x

 1
0√
3

 = k

 1
0√
3

 . To normalize, let k = 1
2
.

λ = 1: AA> − I3(1)

→

 (1− 1) 0
√

3 0
0 (1− 1) 0 0√
3 0 (3− 1) 0

 =

 0 0
√

3 0
0 0 0 0√
3 0 2 0


Row Operation: 1√

3
R1 → R1

⇒

 0 0 1 0
0 0 0 0√
3 0 2 0


Row Operation: R3 ↔ R1

⇒

 √3 0 2 0
0 0 0 0
0 0 1 0


Row Operation: 2R3 −R1

⇒

 √3 0 0 0
0 0 0 0
0 0 1 0

⇒
√3 0 0

0 0 0
0 0 1

xy
z

 = 0

⇒ x
√

3 = 0⇒ x = 0

⇒ z = 0.

Thus, v2 =

xy
z

 =

0
y
0

 = y

0
1
0

 = k

0
1
0

 .
λ = 0: AA>

→

 (1− 0) 0
√

3 0
0 (1− 0) 0 0√
3 0 (3− 0) 0

 =

 1 0
√

3 0
0 1 0 0√
3 0 3 0
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Row Operation:
√

3R1 −R3 → R3

⇒

 1 0
√

3 0
0 1 0 0
0 0 0 0

⇒
1 0

√
3

0 1 0
0 0 0

xy
z

 = 0

⇒ x+ z
√

3 = 0⇒ x = −z
√

3

⇒ y = 0.

Thus, v3 =

xy
z

 =

−z√3
0
z

 = z

−√3
0
1

 = k

−√3
0
1

 . To normalize, k = 1
2
.

λ = 4: A>A− I2(4)

→
[

(4− 4) 0 0
0 (1− 4) 0

]
=

[
0 0 0
0 −3 0

]
⇒
[
0 0
0 −3

] [
x
y

]
= 0→ y = 0.

Thus, v1 =

[
x
y

]
=

[
x
0

]
= x

[
1
0

]
= k

[
1
0

]
.

λ = 1: A>A− I2(1)

→
[

(4− 1) 0 0
0 (1− 1) 0

]
=

[
3 0 0
0 0 0

]
⇒
[
3 0
0 0

] [
x
y

]
= 0→ x = 0.

Thus, v2 =

[
x
y

]
=

[
0
y

]
= y

[
0
1

]
= k

[
0
1

]
.

Now, we calculated 2 eigenvalues for A>A and 3 eigenvalues for AA>. However, our Σ
is not a square matrix, so it cannot be symmetric. Note, that since this is pseudoinverse
problem, we will now denote D to be Σ. Because we have an extra eigenvalue (0), we will
add to it to the subsequent row.

Therefore our D matrix is:

√4 0

0
√

1
0 0

 =

2 0
0 1
0 0

 →D+ =

1
2

0
0 1

1

0 0

> =

[
1
2

0 0
0 1 0

]
.

Therefore, U =

 1
2

0 −
√
3
2

0 1 0√
3
2

0 1
2

→ U> =

 1
2

0
√
3
2

0 1 0

−
√
3
2

0 1
2

 and V =

[
1 0
0 1

]
= V >.

Thus, A> = V D+U>

⇒
[
1 0
0 1

] [
1
2

0 0
0 1 0

] 1
2

0
√
3
2

0 1 0

−
√
3
2

0 1
2

 =
1

4

[
1 0

√
3

0 4 0

]
.

Exercise 37. If we do Moore Penrose pseudo inverse on Ax = b, what solution is provided
is A is fat? Moreover, what solution is provided if A is tall?
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Proof. When A has more columns than rows (fat matrix), then solving a linear equation
using the pseudoinverse provides one of the many possible solutions. Specifically, it provides
the solution x = A+b with minimal Euclidean norm ||x||2 among all possible solutions.

When A has more rows than columns (tall matrix), it is possible for there to be no
solution. In this case, using the pseudoinverse gives us the x for which Ax is as close as
possible to b in terms of Euclidean norm ||Ax− b||2.

Exercise 38. Which matrices can be decomposed by ED?

Proof. Only square matrices have eigenvalue decomposition.

Exercise 39. Which matrices can be decomposed by SVD?

Proof. Every real matrix has a singular value decomposition square. However, matrix V
can either be conjugate transpose or normal transpose depending on whether matrix A is
complex or real.

Exercise 40. What is the trace of a matrix?

Tr(A) =
∑
i

Ai,i (7)

Exercise 41. How to write Frobenius norm of a matrix A in terms of trace?

||A||F =

√
Tr(AA>) (8)

Exercise 42. Why is trace of a multiplication of matrices invariant to cyclic permutations?

Proof. Because the trace of a matrix is only concerned with the diagonal entries, regardless
of the cyclic permutations (even if the two matrices are different in shape), the sum of the
diagonals will stay the same.

Exercise 43. What is the trace of a scalar?

a = Tr(a) (9)

2 Extra Stuff

Exercise 44. What is a Hermitian Matrix?

Proof. A Hermitian matrix is a complex square matrix that is equal to its own conjugate
transpose—more specifically the element of the i-th row and the j-th column is equal to the
complex conjugate of the element in the j-th row and the i-column.

A = AH = A>, (10)

where AH denotes the conjugate transpose, which is done by first taking the transpose

of A and then taking the complex conjugate of each entry in A> (denoted as A>).
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Example. SayA =

 2 2 + i 4
2− i 3 i

4 −i 1

→ A> =

 2 2− i 4
2 + i 3 −i

4 i 1

→ A> =

 2 2 + i 4
2− i 3 i

4 −i 1

 .
A> = AH = A.

Note. Hermitian matrices can be thought of as a complex extension of real symmetric
matrices because they always have real eigenvalues. Sometimes in SVD, U ,V matrices can
be complex— so A = UΣV H → AH = V ΣUH .

More properties of Hermitian matrices can be found here.

Exercise 45. What is an outer product?

Proof. The outer product u ⊗ v is equivalent to a matrix multiplication u, provided that
u is represent u is represented as a m × 1 column vector and v as a n × 1 column vector
(which makes v> a row vector). For instance, if m = 4 and n = 3, then

u⊗ v = uv> =


u1
u2
u3
u4

 [v1 v2 v3
]

=


u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3
u4v1 u4v2 u4v3

 . (11)

Note. This returns a matrix, not a scalar.

Exercise 46. What is the Rotation Matrix?

Proof.

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(12)

Exercise 47. What is a projection? What is a projection matrix? Why do we care?

Proof. If we have a vector b and a line determined by a vector a, how do we find the point
on the line that is closest to b?
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As we see from Figure 1, the closest point p is at the intersection formed by a line through
b that is orthogonal to a. If we think of p as an approximation of b, then the length of
e = b− p is the error in that approximation. We could try to find p using trigonometry or
calculus, but it’s easier to use linear algebra. Since p lies on the line through a, we know
p = ax for some number x. We also know that a is perpendicular to e = b− ax, so

a · e = 0→ a>(b− ax) = 0

a>b− a>ax = 0

x =
a>b

a>a
=
〈a, b〉
||a||2

,

and p = ax = a a>b
a>a

. Note, doubling b doubles p. Doubling a does not affect p. p is
called the projection.

We’d like to write this projection in terms of a projection matrix P : p = Pb

a
a>b

a>a
= Pb→

[ aa>
||a||2

]
b→ P =

aa>

||a||2
.

Note that aa> is a three by three matrix, not a number; matrix multiplication is not
commutative. The column space of P is spanned by a because for any b, Pb lies on the line
determined by a. The rank of P is 1. P is symmetric. P 2b = Pb because the projection of
a vector already on the line through a is just that vector. In general, projection matrices
have the properties:

P> = P and P 2 = P
As we know, the equation Ax = b may have no solution. The vector Ax is always in

the column space of A, and b is unlikely to be in the column space. So, we project b onto a
vector p in the column space of A and solve Ax̂ = p.

More info can be found here.
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