
Machine Learning Basics Review

Akhil Vasvani

March 2019

1 Questions

Exercise 1. Can you state Tom Mitchell’s definition of learning and discuss T , P and E?

Proof. Tom Mitchell provides the definition of learning: “A computer program is said to
learn from experience E with respect to some class of tasks T and performance measure P
if its performance at tasks in T , as measured by P , improves with experience E.”

Exercise 2. What can be different types of tasks encountered in Machine Learning?

Proof. In this relatively formal definition of the word “task,” the process of learning itself is
not the task. Learning is our means of attaining the ability to perform the task. Machine
learning tasks are usually described in terms of how the machine learning system should
process an example. An example is a collection of features that have been quantitatively
measured from some object or event that we want the machine learning system to process.
We typically represent an example as a vector x ∈ Rn where each entry xi of the vector is
another feature.

Here are some of the common machine learning tasks:

• Classification: In this type of task, the computer program is asked to specify which of k
categories some input belongs to. To solve this task, the learning algorithm is usually
asked to produce a function f : Rn → {1, ..., k}. When y = f(x), the model assigns
an input described by vector boldsymbolx to a category identified by numeric code
y. There are other variants of the classification task, for example, where f outputs a
probability distribution over classes.

Example. An example of a classification task is object recognition, where the input
is an image (usually described as a set of pixel brightness values), and the output is a
numeric code identifying the object in the image. For example, the Willow Garage PR2
robot is able to act as a waiter that can recognize different kinds of drinks and deliver
them to people on command (Goodfellow et al., 2010). Modern object recognition is
best accomplished with deep learning Krizhevsky et al. , 2012 ;Ioffe and Szegedy, 2015).
Object recognition is the same basic technology that allows computers to recognize
faces (Taigman et al., 2014), which can be used to automatically tag people in photo
collections and allow computers to interact more naturally with their users.

1

• Classification with missing inputs: Classification becomes more challenging if the com-
puter program is not guaranteed that every measurement in its input vector will always
be provided. In order to solve the classification task, the learning algorithm only has
to define a single function mapping from a vector input to a categorical output. When
some of the inputs may be missing, rather than providing a single classification func-
tion, the learning algorithm must learn a set of functions. Each function corresponds
to classifying x with a different subset of its inputs missing. This kind of situation
arises frequently in medical diagnosis, because many kinds of medical tests are expen-
sive or invasive. One way to efficiently define such a large set of functions is to learn a
probability distribution over all of the relevant variables, then solve the classification
task by marginalizing out the missing variables. With n input variables, we can now
obtain all 2n different classification functions needed for each possible set of missing
inputs, but we only need to learn a single function describing the joint probability
distribution.

• Regression: In this type of task, the computer program is asked to predict a numerical
value given some input. To solve this task, the learning algorithm is asked to output
a function f : Rn → R. This type of task is similar to classification, except that the
format of output is different.

Example. An example of a regression task is the prediction of the expected claim
amount that an insured person will make (used to set insurance premiums), or the
prediction of future prices of securities. These kinds of predictions are also used for
algorithmic trading.

• Transcription: In this type of task, the machine learning system is asked to observe
a relatively unstructured representation of some kind of data and transcribe it into
discrete, textual form.

Example. For example, in optical character recognition, the computer program is
shown a photograph containing an image of text and is asked to return this text in
the form of a sequence of characters (e.g., in ASCII or Unicode format). Google Street
View uses deep learning to process address numbers in this way.

Another example is speech recognition, where the computer program is provided an
audio waveform and emits a sequence of characters or word ID codes describing the
words that were spoken in the audio recording. Deep learning is a crucial component
of modern speech recognition systems used at major companies including Microsoft,
IBM and Google

• Machine Translation: In a machine translation task, the input already consists of a
sequence of symbols in some language, and the computer program must convert this
into a sequence of symbols in another language.

Example. This is commonly applied to natural languages, such as translating from
English to French.

2

• Structured Output: Structured output tasks involve any task where the output is a
vector (or other data structure containing multiple values) with important relation-
ships between the different elements. This is a broad category, and subsumes the
transcription and translation tasks described above, but also many other tasks.

Example. One example is parsing—mapping a natural language sentence into a tree
that describes its grammatical structure and tagging nodes of the trees as being verbs,
nouns, or adverbs, and so on.

Another example is pixel-wise segmentation of images, where the computer program
assigns every pixel in an image to a specific category. For example, deep learning can
be used to annotate the locations of roads in aerial photographs (Mnih and Hinton ,
2010). The output need not have its form mirror the structure of the input as closely
as in these annotation-style tasks.

For example, in image captioning, the computer program observes an image and out-
puts a natural language sentence describing the image.

• Anomaly Detection: In this type of task, the computer program sifts through a set of
events or objects, and flags some of them as being unusual or atypical.

Example. An example of an anomaly detection task is credit card fraud detection.
By modeling your purchasing habits, a credit card company can detect misuse of your
cards. If a thief steals your credit card or credit card information, the thief’s purchases
will often come from a different probability distribution over purchase types than your
own. The credit card company can prevent fraud by placing a hold on an account as
soon as that card has been used for an uncharacteristic purchase.

• Synthesis and Sampling: In this type of task, the machine learning algorithm is asked
to generate new examples that are similar to those in the training data. Synthesis and
sampling via machine learning can be useful for media applications where it can be
expensive or boring for an artist to generate large volumes of content by hand.

Example. For example, video games can automatically generate textures for large
objects or landscapes, rather than requiring an artist to manually label each pixel
(Luo et al. , 2013).

In some cases, we want the sampling or synthesis procedure to generate some specific
kind of output given the input. For example, in a speech synthesis task, we provide a
written sentence and ask the program to emit an audio waveform containing a spoken
version of that sentence. This is a kind of structured output task, but with the added
qualification that there is no single correct output for each input, and we explicitly
desire a large amount of variation in the output, in order for the output to seem more
natural and realistic.

• Imputation of Missing Values: In this type of task, the machine learning algorithm is
given a new example x ∈ Rn , but with some entries xi of x missing. The algorithm
must provide a prediction of the values of the missing entries.

3

• Denoising: In this type of task, the machine learning algorithm is given in input a cor-
rupted example x̃ ∈ Rn obtained by an unknown corruption process from a clean
example x ∈ Rn. The learner must predict the clean example x from its corrupted
version x̃, or more generally predict the conditional probability distribution p(x | x̃).

• Density estimation or probability mass function estimation: In the density esti-
mation problem, the machine learning algorithm is asked to learn a function pmodel:
Rn → R, where pmodel(x) can be interpreted as a probability density function (if x
is continuous) or a probability mass function (if x is discrete) on the space that the
examples were drawn from. To do such a task well (we will specify exactly what that
means when we discuss performance measures P), the algorithm needs to learn the
structure of the data it has seen. It must know where examples cluster tightly and
where they are unlikely to occur. Most of the tasks described above require the learning
algorithm to at least implicitly capture the structure of the probability distribution.
Density estimation allows us to explicitly capture that distribution. In principle, we
can then perform computations on that distribution in order to solve the other tasks
as well.

Example. For example, if we have performed density estimation to obtain a probabil-
ity distribution p(x), we can use that distribution to solve the missing value imputation
task. If a value xi is missing and all of the other values, denoted x−i, are given, then
we know the distribution over it is given by p(xi |x−i). In practice, density estimation
does not always allow us to solve all of these related tasks, because in many cases the
required operations on p(x) are computationally intractable.

Exercise 3. What are supervised, unsupervised, semi-supervised, self-supervised, multi-
instance learning, and reinforcement learning?

Proof. Machine learning algorithms can be broadly categorized as unsupervised or textbf-
supervised by what kind of experience they are allowed to have during the learning process.

Unsupervised learning algorithms experience a dataset containing many features,
then learn useful properties of the structure of this dataset. In the context of deep learning,
we usually want to learn the entire probability distribution that generated a dataset, whether
explicitly as in density estimation or implicitly for tasks like synthesis or denoising. Some
other unsupervised learning algorithms perform other roles, like clustering, which consists of
dividing the dataset into clusters of similar examples.

Supervised learning algorithms experience a dataset containing features, but each
example is also associated with a label or target. For example, the Iris dataset is annotated
with the species of each iris plant. A supervised learning algorithm can study the Iris dataset
and learn to classify iris plants into three different species based on their measurements.

Roughly speaking, unsupervised learning involves observing several examples of a random
vector x, and attempting to implicitly or explicitly learn the probability distribution p(x), or
some interesting properties of that distribution, while supervised learning involves observing
several examples of a random vector x and an associated value or vector y, and learning to

4

predict y from x, usually by estimating p(y |x). The term supervised learning originates
from the view of the target y being provided by an instructor or teacher who shows the
machine learning system what to do. In unsupervised learning, there is no instructor or
teacher, and the algorithm must learn to make sense of the data without this guide.

Other variants of the learning paradigm are possible. For example, in semi-supervised
learning, some examples include a supervision target but others do not. In multi-instance
learning, an entire collection of examples is labeled as containing or not containing an exam-
ple of a class, but the individual members of the collection are not labeled. Some machine
learning algorithms do not just experience a fixed dataset. For example, reinforcement
learning algorithms interact with an environment, so there is a feedback loop between the
learning system and its experiences. Such algorithms are beyond the scope of this book.

Exercise 4. Loosely how can supervised learning be converted into unsupervised learning
and vice-versa?

Proof. Unsupervised learning and supervised learning are not formally defined terms. The
lines between them are often blurred. Many machine learning technologies can be used
to perform both tasks. For example, the chain rule of probability states that for a vector
x ∈ Rn, the joint distribution can be decomposed as

p(x) =
n∏

i=1

p(xi | x1, ..., xi−1). (1)

This decomposition means that we can solve the ostensibly unsupervised problem of modeling
p(x) by splitting it into n supervised learning problems.

Alternatively, we can solve the supervised learning problem of learning p(y | x) by using
traditional unsupervised learning technologies to learn the joint distribution p(x, y) and
inferring

p(y | x) =
p(x, y)∑
y′ p(x, y

′)
(2)

Exercise 5. Consider linear regression. What are T , P and E?

Proof. As the name implies, linear regression solves a regression problem.
In other words, our task T is to build a system that can predict the value of a scalar

y ∈ R from taking a vector of features x ∈ Rn as input via outputting ŷ = w>x, where
w ∈ Rn is a vector of parameters. Think of w as a set of weights that determine how
each feature affects the prediction — if a feature’s weight is large in magnitude, then it has
a large effect on the prediction; otherwise if a feature’s weight is zero, it has no effect on the
prediction.

The performance of the model, P , is measured by the mean squared error of the model
on the test set. The mean squared error is given by:

MSEtest =
1

m

∑
i

(ŷ(test) − y(test))2i =
1

m
||ŷ(test) − y(test)||22.

5

We need to design an algorithm that will improve the weights w in a way that reduces
MSEtest when the algorithm is allowed to gain experience E by observing a training set
(X(train),y(train)):

w =
(
X(train)>X(train)

)−1
X(train)>y(train).

Exercise 6. Derive the normal equation for linear regression.

Proof. To minimize (MSEtrain), we can simply solve for where its gradient is 0:

∇wMSEtrain = 0

⇒ ∇w
1

m
||ŷ(train) − y(train)||22 = 0

⇒ 1

m
∇w||X(train)w − y(train)||22 = 0

⇒ ∇w
(
X(train)w − y(train)

)>(
X(train)w − y(train)

)
= 0

⇒ ∇w
(
w>X(train)>X(train)w − 2w>X(train)>y(train) + y(train)>y(train)

)
= 0

⇒ 2X(train)>X(train)w − 2X(train)>y(train) = 0

w =
(
X(train)>X(train)

)−1
X(train)>y(train).

The system of equations whose solution is given above is known as the normal equa-
tions.

Note. Matrix Differentiation
If a, b are k × 1 vectors, then

∂

∂b

[
a>b

]
=

∂

∂b

[
b>a

]
= a.

If A is any symmetric matrix, then

∂

∂b

[
b>Ab

]
= 2Ab = 2b>A.

Note. Take a look at the normal equation that we just derived. It has the matrix inversion
in it and inverting a matrix is an expensive operation. Our design matrix X has k + 1
columns where k is the number of predictors (x(1), x(2), x(3), ...) and m rows of samples. In
most real life situations, k is easily greater than 1,000 and sample size will be greater than
100,000. Since the matrix inversion is (O(n3)), inverting X>X (1,000 by 1,000 matrix) will
take a while to calculate. Hence, the reason why we would use Gradient Descent in Linear
Regression is because it’s computationally cheaper to find optima. However, if the sample
size is small enough, just use the normal equations.

6

TL;DR. When we use Gradient Descent, we have to scale the data. When we use normal
equation, we do not have to.

Exercise 7. What do you mean by affine transformation? Discuss affine vs. linear trans-
formation.

Proof. It is worth noting that the term linear regression is often used to refer to a slightly
more sophisticated model with one additional parameter—an intercept term b. In this model

ŷ = w>x+ b

so the mapping from parameters to predictions is still a linear function but the mapping
from features to predictions is now an affine function. This extension to affine functions
means that the plot of the model’s predictions still looks like a line, but it need not pass
through the origin.

Exercise 8. Discuss training error, test error, generalization error, overfitting, and under-
fitting.

Proof. The central challenge in machine learning is that we must perform well on new,
previously unseen inputs—not just those on which our model was trained. The ability to
perform well on previously unobserved inputs is called generalization.

Typically, when training a machine learning model, we have access to a training set, we
can compute some error measure on the training set called the training error, and we reduce
this training error. So far, what we have described is simply an optimization problem. What
separates machine learning from optimization is that we want the generalization error,
also called the test error, to be low as well. The generalization error is defined as the
expected value of the error on a new input. Here the expectation is taken across different
possible inputs, drawn from the distribution of inputs we expect the system to encounter in
practice.

Of course, when we use a machine learning algorithm, we do not fix the parameters ahead
of time, then sample both datasets. We sample the training set, then use it to choose the
parameters to reduce training set error, then sample the test set. Under this process, the
expected test error is greater than or equal to the expected value of training error. The
factors determining how well a machine learning algorithm will perform are its ability to:

1. Make the training error small.

2. Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning: un-
derfitting and overfitting. Underfitting occurs when the model is not able to obtain a
sufficiently low error value on the training set. Overfitting occurs when the gap between the
training error and test error is too large.

7

Figure 1: Typical relationship between capacity and error. Training and test error behave
differently. At the left end of the graph, training error and generalization error are both
high. This is the underfitting regime. As we increase capacity, training error decreases,
but the gap between training and generalization error increases. Eventually, the size of this
gap outweighs the decrease in training error, and we enter the overfitting regime, where
capacity is too large, above the optimal capacity.

8

Exercise 9. Compare representational capacity vs. effective capacity of a model.

Proof. So far we have described only one way of changing a model’s capacity: by changing
the number of input features it has, and simultaneously adding new parameters associated
with those features. There are in fact many ways of changing a model’s capacity. Capacity
is not determined only by the choice of model. The model specifies which family of functions
the learning algorithm can choose from when varying the parameters in order to reduce a
training objective. This is called the representational capacity of the model. In many
cases, finding the best function within this family is a very difficult optimization problem.
In practice, the learning algorithm does not actually find the best function, but merely
one that significantly reduces the training error. These additional limitations, such as the
imperfection of the optimization algorithm, mean that the learning algorithm’s effective
capacity may be less than the representational capacity of the model family.

Exercise 10. Discuss VC dimension.

Proof. Statistical learning theory provides various means of quantifying model capacity.
Among these, the most well-known is the Vapnik-Chervonenkis dimension, or VC di-
mension. The VC dimension measures the capacity of a binary classifier. The VC dimension
is defined as being the largest possible value of m for which there exists a training set of m
different x points that the classifier can label arbitrarily.

Exercise 11. What are non-parametric models? What is non-parametric learning?

Proof. To reach the most extreme case of arbitrarily high capacity, we introduce the concept
of non-parametric models. So far, we have seen only parametric models, such as linear
regression. Parametric models learn a function described by a parameter vector whose size is
finite and fixed before any data is observed. Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as an algorithm
that searches over all possible probability distributions) that cannot be implemented in
practice. However, we can also design practical non-parametric models by making their
complexity a function of the training set size. One example of such an algorithm is nearest
neighbor regression. Unlike linear regression, which has a fixed-length vector of weights,
the nearest neighbor regression model simply stores theX and y from the training set. When
asked to classify a test point x, the model looks up the nearest entry in the training set and
returns the associated regression target. In other words, ŷ = yi where i = argmin||X i,:−x||22.
The algorithm can also be generalized to distance metrics other than the L2 norm, such as
learned distance metrics (Goldberger et al., 2005). If the algorithm is allowed to break ties
by averaging the yi values for all xi,: that are tied for nearest, then this algorithm is able
to achieve the minimum possible training error (which might be greater than zero, if two
identical inputs are associated with different outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a parametric
learning algorithm inside another algorithm that increases the number of parameters as
needed. For example, we could imagine an outer loop of learning that changes the degree of
the polynomial learned by linear regression on top of a polynomial expansion of the input.

9

Exercise 12. What is an ideal model? What is Bayes error? What is/are the source(s) of
Bayes error occur?

Proof. The ideal model is an oracle that simply knows the true probability distribution that
generates the data. Even such a model will still incur some error on many problems, because
there may still be some noise in the distribution. In the case of supervised learning, the
mapping from x to y may be inherently stochastic, or y may be a deterministic function
that involves other variables besides those included in x. The error incurred by an oracle
making predictions from the true distribution p(x, y) is called the Bayes error.

Example. The effect of the training dataset size on the train and test error, as well as on
the optimal model capacity. We constructed a synthetic regression problem based on adding
a moderate amount of noise to a degree-5 polynomial, generated a single test set, and then
generated several different sizes of training set. For each size, we generated 40 different
training sets in order to plot error bars showing 95 percent confidence intervals.

10

Figure 2: (Top) The MSE on the training and test set for two different models: a quadratic
model, and a model with degree chosen to minimize the test error. Both are fit in closed form.
For the quadratic model, the training error increases as the size of the training set increases.
This is because larger datasets are harder to fit. Simultaneously, the test error decreases,
because fewer incorrect hypotheses are consistent with the training data. The quadratic
model does not have enough capacity to solve the task, so its test error asymptotes to a
high value. The test error at optimal capacity asymptotes to the Bayes error. The training
error can fall below the Bayes error, due to the ability of the training algorithm to memorize
specific instances of the training set. As the training size increases to infinity, the training
error of any fixed-capacity model (here, the quadratic model) must rise to at least the Bayes
error. (Bottom) As the training set size increases, the optimal capacity (shown here as the
degree of the optimal polynomial regressor) increases. The optimal capacity plateaus after
reaching sufficient complexity to solve the task.

11

Exercise 13. What is the no free lunch theorem in connection to Machine Learning?

Proof. Learning theory claims that a machine learning algorithm can generalize well from
a finite training set of examples. This seems to contradict some basic principles of logic
because to logically infer a rule describing every member of a set, one must have information
about every member of that set.

In part, machine learning avoids this problem by offering only probabilistic rules, rather
than the entirely certain rules used in purely logical reasoning. Machine learning promises
to find rules that are probably correct about most members of the set they concern.

Unfortunately, even this does not resolve the entire problem. The no free lunch the-
orem for machine learning (Wolpert, 1996) states that, averaged over all possible data
generating distributions, every classification algorithm has the same error rate when clas-
sifying previously unobserved points. In other words, in some sense, no machine learning
algorithm is universally any better than any other. The most sophisticated algorithm we can
conceive of has the same average performance (over all possible tasks) as merely predicting
that every point belongs to the same class.

Note. Fortunately, these results hold only when we average over all possible data generat-
ing distributions. If we make assumptions about the kinds of probability distributions we
encounter in real-world applications, then we can design learning algorithms that perform
well on these distributions.

This means that the goal of machine learning research is not to seek a universal learning
algorithm or the absolute best learning algorithm. Instead, our goal is to understand what
kinds of distributions are relevant to the “real world” that an AI agent experiences, and
what kinds of machine learning algorithms perform well on data drawn from the kinds of
data generating distributions we care about.

TL;DR: The no free lunch theorem implies that we must design our machine learning
algorithms to perform well on a specific task. We do so by building a set of preferences into
the learning algorithm. When these preferences are aligned with the learning problems we
ask the algorithm to solve, it performs better.

Exercise 14. What is weight decay? What is it added?

Proof. We can give a learning algorithm a preference for one solution in its hypothesis space
to another. This means that both functions are eligible, but one is preferred. The unpreferred
solution will be chosen only if it fits the training data significantly better than the preferred
solution.

Example. For example, we can modify the training criterion for linear regression to include
weight decay. To perform linear regression with weight decay, we minimize a sum com-
prising both the mean squared error on the training and a criterion J(w) that expresses a
preference for the weights to have smaller squared L2 norm. Specifically,

J(w) = MSEtrain + λw>w, (3)

12

where λ is a value chosen ahead of time that controls the strength of our preference for
smaller weights. When λ = 0, we impose no preference, and larger λ forces the weights to
become smaller. Minimizing J(w) results in a choice of weights that make a tradeoff between
fitting the training data and being small. This gives us solutions that have a smaller slope,
or put weight on fewer of the features. As an example of how we can control a model’s
tendency to overfit or underfit via weight decay, we can train a high-degree polynomial
regression model with different values of λ.

Figure 3: We fit a high-degree polynomial regression model to our example training set. The
true function is quadratic, but here we use only models with degree 9. We vary the amount
of weight decay to prevent these high-degree models from overfitting. (Left) With very large
λ, we can force the model to learn a function with no slope at all. This underfits because
it can only represent a constant function. (Center) With a medium value of λ, the learning
algorithm recovers a curve with the right general shape. Even though the model is capable
of representing functions with much more complicated shape, weight decay has encouraged
it to use a simpler function described by smaller coefficients. (Right) With weight decay
approaching zero (i.e., using the Moore-Penrose pseudoinverse to solve the underdetermined
problem with minimal regularization), the degree-9 polynomial overfits significantly

TL;DR. Large weight decay results in underfitting, medium weight decay is just right, and
small weight decay results in overfitting.

Exercise 15. What is regularization? Intuitively, what does regularization do during the
optimization procedure? (expresses preferences to certain solutions, implicitly and explicitly)

Proof. More generally, we can regularize a model that learns a function f(x;θ) by adding a
penalty called a regularizer to the cost function. In the case of weight decay, the regularizer
term is Ω(w) = w>w.

13

In our weight decay example, we expressed our preference for linear functions defined with
smaller weights explicitly, via an extra term in the criterion we minimize. There are many
other ways of expressing preferences for different solutions, both implicitly and explicitly.
Together, these different approaches are known as regularization. Regularization is any
modification we make to a learning algorithm that is intended to reduce its generalization
error but not its training error. Regularization is one of the central concerns of the field of
machine learning, rivaled in its importance only by optimization.

Exercise 16. What is a hyperparameter? How do you choose which settings are going to
be hyperparameters and which are going to be learnt?

Proof. Most machine learning algorithms have several settings that we can use to control the
behavior of the learning algorithm. These settings are called hyperparameters. The values
of hyperparameters are not adapted by the learning algorithm itself (though we can design
a nested learning procedure where one learning algorithm learns the best hyperparameters
for another learning algorithm).

Sometimes a setting is chosen to be a hyperparameter that the learning algorithm does
not learn because it is difficult to optimize. More frequently, the setting must be a hyperpa-
rameter because it is not appropriate to learn that hyperparameter on the training set. This
applies to all hyperparameters that control model capacity. If learned on the training set,
such hyperparameters would always choose the maximum possible model capacity, resulting
in overfitting.

Example. For example, we can always fit the training set better with a higher degree
polynomial and a weight decay setting of λ = 0 than we could with a lower degree polynomial
and a positive weight decay setting.

TL;DR. Hyperparameters are settings that we can use to control the behaviour of the
learning algorithm. The setting must be a hyperparameter because it is either difficult to
optimize or not appropriate to learn that hyperparameter for the training set. For instance,
hyperparameter controlling model capacity where it would always choose to maximize the
model capacity for the training set that results in overfitting.

Exercise 17. Why is a validation set necessary?

Proof. To solve this problem, we need a validation set of examples that the training algo-
rithm does not observe.

A held-out test set, composed of examples coming from the same distribution as the
training set, can be used to estimate the generalization error of a learner, after the learning
process has completed. It is important that the test examples are not used in any way to make
choices about the model, including its hyperparameters. For this reason, no example from the
test set can be used in the validation set. Therefore, we always construct the validation set
from the training data. Specifically, we split the training data into two disjoint subsets. One
of these subsets is used to learn the parameters. The other subset is our validation set, used
to estimate the generalization error during or after training, allowing for the hyperparameters

14

to be updated accordingly. The subset of data used to learn the parameters is still typically
called the training set, even though this may be confused with the larger pool of data used for
the entire training process. The subset of data used to guide the selection of hyperparameters
is called the validation set. Typically, one uses about 80% of the training data for training
and 20% for validation. Since the validation set is used to “train” the hyperparameters, the
validation set error will underestimate the generalization error, though typically by a smaller
amount than the training error.

Exercise 18. What are the different types of cross-validation? When do you use which one?

Proof. Cross Validation is a very useful technique for assessing the effectiveness of your
model, particularly in cases where you need to mitigate overfitting or underfitting. It is
also of use in determining the hyper parameters of your model, in the sense that which
parameters will result in lowest generalization error. There are two types of cross-validation:
exhaustive and non-exhaustive. Exhaustive cross-validation methods are cross-validation
methods which learn and test on all possible ways to divide the original sample into a training
and a validation set. The following are exhaustive cross-validation techniques:

• LOOCV: Leave-one-out cross validation is k-fold cross validation taken to its logical
extreme, with k equal to n, the number of data points in the set. That means that n
separate times, the function approximator is trained on all the data except for one point
and a prediction is made for that point. As before the average error is computed and
used to evaluate the model. The evaluation given by leave-one-out cross validation error
(LOO-XVE) is good, but at first pass it seems very expensive to compute. Fortunately,
locally weighted learners can make LOO predictions just as easily as they make regular
predictions. That means computing the LOO-XVE takes no more time than computing
the residual error and it is a much better way to evaluate models.

• LPOCV: This approach is a generalization of the LOOCV method because it leaves p
data points out of training data, i.e. if there are n data points in the original sample
then, n−p samples are used to train the model and p points are used as the validation
set. This is repeated for all combinations in which original sample can be separated
this way, and then the error is averaged for all trials, to give overall effectiveness.

Note. This method is exhaustive in the sense that it needs to train and validate
the model for all possible combinations, and for moderately large p, it can become
computationally infeasible.

Non-exhaustive cross validation methods do not compute all ways of splitting the original
sample. In laymen’s terms, you have to decide how many subsets need to be made. The
following are non-exhaustive cross-validation techniques:

• Holdout Method: The holdout method is the simplest kind of cross validation. The
data set is separated into two sets, called the training set and the testing set. The
function approximator fits a function using the training set only. Then the function
approximator is asked to predict the output values for the data in the testing set (it
has never seen these output values before). The errors it makes are accumulated as

15

before to give the mean absolute test set error, which is used to evaluate the model.
The advantage of this method is that it is usually preferable to the residual method
and takes no longer to compute. However, its evaluation can have a high variance.
The evaluation may depend heavily on which data points end up in the training set
and which end up in the test set, and thus the evaluation may be significantly different
depending on how the division is made.

• K-fold cross validation K-fold cross validation is one way to improve over the holdout
method. The data set is divided into k subsets, and the holdout method is repeated
k times. Each time, one of the k subsets is used as the test set and the other k − 1
subsets are put together to form a training set. Then the average error across all k
trials is computed. The advantage of this method is that it matters less how the data
gets divided. Every data point gets to be in a test set exactly once, and gets to be
in a training set k − 1 times. The variance of the resulting estimate is reduced as k
is increased. The disadvantage of this method is that the training algorithm has to
be rerun from scratch k times, which means it takes k times as much computation to
make an evaluation.

Note. k is usually set between 5-10.

• Stratified K-fold Cross Validation: Stratified k-fold cross validation splits the data
into folds governed by criteria such as ensuring that each fold has the same proportion
of observations with a given categorical value, such as the class outcome value.

• Repeated K-fold Cross Validation: This is a variant of where the k-fold cross-validation
procedure is repeated n times, where importantly, the data sample is shuffled prior to
each repetition, which results in a different split of the sample. The advantage of do-
ing this is that you can independently choose how large each test set is and how many
trials you average over.

Now the question becomes when to use which one? Let’s start with the exhaustive
methods first.

• LOOCV: Good for less data and unbalanced dataset and target values.

• LPOCV: Good for less data and unbalanced dataset and target values.

• Holdout: The hold-out method is good to use when you have a very large dataset, you
have a limited amount of time, or you are starting to build an initial model. Sometimes
it is easier to start with a basic model as a reference point to compare with other more
complex models. If the results (MSE or RMSE) are the same between the complex
models and the simpler ones choose the simpler one (Occam’s Razor).

• k-fold Cross validation: Cross-validation is usually the preferred method because it
gives your model the opportunity to train on multiple train-test splits. This gives
you a better indication of how well your model will perform on unseen data.

16

• Stratified k-Fold Cross Validation: In some cases, there may be a large imbalance in
the response variables. For example, in dataset concerning price of houses, there might
be large number of houses having high price. Or in case of classification, there might be
several times more negative samples than positive samples. For such problems, a slight
variation in the K Fold cross validation technique is made, such that each fold contains
approximately the same percentage of samples of each target class as the complete set,
or in case of prediction problems, the mean response value is approximately equal in
all the folds.

• Repeated k-Fold Cross Validation: Good for huge data. If you are getting similar
scores and optimal model’s parameters with some of your iterations.

Exercise 19. What is the maximal likelihood of a parameter vector θ? Where does the log
come from?

Proof. Consider a set of m examples X = {x(1), ...,x(m)} drawn independently from the true
but unknown data generating distribution pdata(x).

Let pmodel(x;θ) be a parametric family of probability distributions over the same space
indexed by θ. In other words, pmodel(x;θ) maps any configuration x to a real number
estimating the true probability pdata(x).

The maximum likelihood estimator for θ is then defined as

θML = argmax
θ

pmodel(X;θ) (4)

= argmax
θ

m∏
i=1

pmodel(x
(i);θ) (5)

This product over many probabilities can be inconvenient for a variety of reasons. For
example, it is prone to numerical underflow. To obtain a more convenient but equivalent
optimization problem, we observe that taking the logarithm of the likelihood does not change
its arg max but does conveniently transform a product into a sum:

θML = argmax
θ

m∑
i=1

log pmodel(x
(i);θ). (6)

Because the arg max does not change when we rescale the cost function, we can divide by
m to obtain a version of the criterion that is expressed as an expectation with respect to the
empirical distribution p̂data a defined by the training data:

θML = argmax
θ

Ex∼p̂data log pmodel(x;θ) (7)

Note. One way to interpret maximum likelihood estimation is to view it as minimizing the
dissimilarity between the empirical distribution p̂data a defined by the training set and the

17

model distribution, with the degree of dissimilarity between the two measured by the KL
divergence. The KL divergence is given by

DKL(p̂data||pmodel) = Ex∼p̂data [log p̂data(x)− log pmodel(x)].

The term on the left is a function only of the data generating process, not the model. This
means when we train the model to minimize the KL divergence, we need only minimize

−Ex∼p̂data [log pmodel(x)],

which is of course the same as the maximization in equation 7.

Exercise 20. Prove that for linear regression MSE can be derived from maximal likelihood
by proper assumptions.

Proof. To derive the same linear regression algorithm we obtained before, we define p(y |x) =
N (y; ŷ(x;w), σ2). The function ŷ(x;w) gives the prediction of the mean of the Gaussian.
In this example, we assume that the variance is fixed to some constant σ2 chosen by the user.
We will see that this choice of the functional form of p(y |x) causes the maximum likelihood
estimation procedure to yield the same learning algorithm as we developed before.

Since the examples are assumed to be i.i.d., the conditional log-likelihood is given by

m∑
i=1

log p(y(i) |x(i);w) =
m∑
i=1

log
e−
||ŷ(i)−y(i)||2

2σ2

σ
√

2π
= −

m∑
i=1

log σ−
m∑
i=1

1

2
log(2π)−

m∑
i=1

||ŷ(i) − y(i)||2

2σ2

⇒ −m log σ − m

2
log(2π)− 1

2σ2
(m)

[1

m

m∑
i=1

||ŷ(i) − y(i)||2
]

= −m log σ − m

2
log(2π)− 1

2σ2
(m)MSEtrain

where θ = w and ŷ(i) is the output of the linear regression on the i-th input x(i) and m
is the number of the training examples.

Comparing the log-likelihood with the mean squared error we immediately see that max-
imizing the log-likelihood with respect to w yields the same estimate of the parameters w
as does minimizing the mean squared error. The two criteria have different values but the
same location of the optimum. This justifies the use of the MSE as a maximum likelihood
estimation procedure.

Exercise 21. What is consistency?

Proof. In particular, we usually wish that, as the number of data points m in our dataset
increases, our point estimates converge to the true value of the corresponding parameters.
More formally, we would like that

plimm→∞θ̂m = θ (8)

18

The symbol plim indicates convergence in probability, meaning that for any ε > 0,
P (|θ̂m − θ| > ε) → 0 as m → ∞. The condition described in equation 7 is known

as consistency. It is sometimes referred to as weak consistency, with strong consistency
referring to the almost sure convergence of θ̂ to θ. Almost sure convergence of a
sequence of random variables x(1), x(2), ... to a value x occurs when p(limm→∞ x(m) = x) = 1.

Consistency ensures that the bias induced by the estimator diminishes as the number of
data examples grows. However, the reverse is not true—asymptotic unbiasedness does not
imply consistency.

Exercise 22. What is statistic efficiency?

Proof. Consistent estimators can differ in their statistic efficiency, meaning that one con-
sistent estimator may obtain lower generalization error for a fixed number of samples m, or
equivalently, may require fewer examples to obtain a fixed level of generalization error.

Statistical efficiency is typically studied in the parametric case (like in linear regression)
where our goal is to estimate the value of a parameter (and assuming it is possible to
identify the true parameter), not the value of a function. A way to measure how close we
are to the true parameter is by the expected mean squared error, computing the squared
difference between the estimated and true parameter values, where the expectation is over
m training samples from the data generating distribution. That parametric mean squared
error decreases as m increases, and for m large, the Cramér-Rao lower bound (Rao, 1945;
Cramér, 1946) shows that no consistent estimator has a lower mean squared error than the
maximum likelihood estimator.

Exercise 23. Why is maximal likelihood the preferred estimator in ML?

Proof. For these reasons (consistency and efficiency), maximum likelihood is often con-
sidered the preferred estimator to use for machine learning.

Exercise 24. Under what conditions do the maximal likelihood estimator guarantee con-
sistency?

Proof. Under appropriate conditions, the maximum likelihood estimator has the property
of consistency, meaning that as the number of training examples approaches infinity, the
maximum likelihood estimate of a parameter converges to the true value of the parameter.
These conditions are:

• The true distribution pdata must lie within the model family pmodel(·;θ). Otherwise, no
estimator can recover pdata.

• The true distribution pdata must correspond to exactly one value of θ. Otherwise, maxi-
mum likelihood can recover the correct pdata, but will not be able to determine which
value of θ was used by the data generating processing.

Exercise 25. What is cross-entropy of loss?

19

Proof. Many authors use the term “cross-entropy” to identify specifically the negative log-
likelihood of a Bernoulli or softmax distribution, but that is a misnomer. Any loss consisting
of a negative log-likelihood is a cross-entropy between the empirical distribution defined
by the training set and the probability distribution defined by model. For example, mean
squared error is the cross-entropy between the empirical distribution and a Gaussian model.

Note. It is important to point out that while the loss does not depend on the distribution
between the incorrect classes (only the distribution between the correct class and the rest),
the gradient of this loss function does effect the incorrect classes differently depending on
how wrong they are

20

