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1 Questions

Exercise 1. What is regularization?

Proof. Regularization is a technique to discourage the complexity of the model. It does this
by penalizing the loss function, which helps solve the overfitting problem.

Example. Let’s look at a simple Linear Regression to illustrate the use of regularization.
Assuming no bias parameter, say Y represents the approximate values from the input X =
{x1, . . . ,xn} and their associated weights w = {w1, . . . ,wn}– for n features– such that

Y = Xw =
n∑
i=1

wixi.

Now, if we compare these approximate values to our actual values we can see how close
(or far) we are between the values– this our loss function. In this specific case, we not only
take the difference between the two values, but square the difference as well to avoid negative
differences and sum all of them– this is called residual sum of differences or RSS.

RSS = (y − Y )2 =
n∑
i=1

(yi − Y i)
2 =

n∑
i=1

(yi −
p∑
j=1

wjxij)
2

= (Xw − y)>(Xw − y).

Initially, the weights are chosen to minimize this loss function but will adjust based on
your training data. If there is noise in the training data, then the estimated weights will not
generalize well to the future data. See Figure 1. This is where regularization comes in and
shrinks or regularizes these learned weights towards zero.

There are three types of regularization used in Machine Learning: L1 regularization,
L2 regularization, and a hybrid of L1 and L2 regularization.
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Figure 1: This figure shows the fitting of polynomials of various order on the data points. The
function with degree 3 is able to fit our training data to a great extent. So the polynomial of
order 9 should also be able to fit the underlying pattern even better? We see that polynomial
of degree 9 is able to make accurate predictions for all the datapoints in the training set.
But wait, the function obtained for the polynomial of degree 9 looks nothing like our chosen
function sin(2πx). So what has happened here? This is called overfitting. The polynomial
of degree 9 has trained itself to get the correct target values for all the noise induced data
points and thus has failed to predict the correct pattern. This function may give zero error for
training set but will give huge errors in predicting the correct target values for test dataset.
Regularization helps to avoid this problem.
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Exercise 2. What is L2 regularization?

Proof. This regularization strategy drives the weights closer to the origin (or any other spec-
ified parameter value) by adding a regularization term Ω(θ) = 1

2
||w||22 to the objective or

loss function. L2 regularization is also known as ridge regression or Tikhonov regular-
ization.

We can gain some insight into the behavior of weight decay regularization by studying
the gradient of the regularized objective function. To simplify the presentation, we assume
no bias parameter. Such a model has the following total objective function:

J̃(w;X,y) =
α

2
w>w + J(w;X,y)

with the corresponding parameter gradient

∇wJ̃(w;X,y) = αw +∇wJ(w;X,y).

To take a single gradient step to update the weights, we perform this update:

w ← w − ε (αw +∇wJ(w;X,y)) = (1− εα)w − ε∇wJ(w;X,y).

We can see that the addition of the weight decay term has modified the learning rule
to multiplicatively shrink the weight vector by a constant factor on each step, just before
performing the usual gradient update. This describes what happens in a single step. But
what happens over the entire course of training?

We can further simplify the analysis by making a quadratic approximation to the objec-
tive function in the neighborhood of the value of the weights that obtains minimal unregu-
larized training cost, w∗ = arg minw J(w). If the objective function is truly quadratic, as in
the case of fitting a linear regression model with mean squared error, then the approximation
is perfect. The approximation Ĵ is given by

Ĵ(θ) = J (w∗) +
1

2
(w −w∗)>H (w −w∗)

where H is the Hessian matrix of J with respect to w evaluated at w∗. There is no
first-order term in this quadratic approximation, because w∗ is defined to be a minimum,
where the gradient vanishes. Likewise, because w∗ is the location of a minimum of J , we
can conclude that H is positive semi-definite.

The minimum of Ĵ occurs where its gradient

∇wĴ(w) = H (w −w∗)

is equal to 0.
To study the effect of weight decay, we modify the above equation by adding the weight

decay gradient. We can now solve for the minimum of the regularized Ĵ . We use the variable
w̃ to represent the location of the minimum.

αw̃ +H (w̃ −w∗) = 0
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⇒ (H + αI)w̃ = Hw∗

⇒ w̃ = (H + αI)−1Hw∗.

As α approaches 0, the regularized solution w̃ approaches w∗. But what happens as α
grows? Because H is real and symmetric, we can decompose it into a diagonal matrix Λ and
an orthonormal basis of eigenvectors,Q, such thatH = QΛQ>. Applying the decomposition
to the above, we obtain:

w̃ =
(
QΛQ> + αI

)−1
QΛQ>w∗

=
[
Q(Λ + αI)Q>

]−1
QΛQ>w∗

= Q(Λ + αI)−1ΛQ>w∗.

We see that the effect of weight decay is to rescale w∗ along the axes defined by the
eigenvectors ofH . Specifically, the component of w∗ that is aligned with the i-th eigenvector
of H is rescaled by a factor of λi

λi+α
.

Along the directions where the eigenvalues of H are relatively large, for example, where
λi � α the effect of regularization is relatively small. However, components with λi � α
will be shrunk to have nearly zero magnitude. This effect is illustrated in the Figure 2.

Figure 2: An illustration of the effect of L2 (or weight decay) regularization on the value
of the optimal w. The solid ellipses represent contours of equal value of the unregularized
objective. The dotted circles represent contours of equal value of the L2 regularizer. At
the point w̃, these competing objectives reach an equilibrium. In the first dimension, the
eigenvalue of the Hessian of J is small. The objective function does not increase much when
moving horizontally away from w. Because the objective function does not express a strong
preference along this direction, the regularizer has a strong effect on this axis. The regularizer
pulls w1 close to zero. In the second dimension, the objective function is very sensitive to
movements away from w . The corresponding eigenvalue is large, indicating high curvature.
As a result, weight decay affects the position of w2 relatively little.
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Only directions along which the parameters contribute significantly to reducing the ob-
jective function are preserved relatively intact. In directions that do not contribute to re-
ducing the objective function, a small eigenvalue of the Hessian tells us that movement in
this direction will not significantly increase the gradient. Components of the weight vec-
tor corresponding to such unimportant directions are decayed away through the use of the
regularization throughout training.

Example. For linear regression, the cost function is the sum of squared errors:

(Xw − y)>(Xw − y).

When we add L2 regularization, the objective function changes to

(Xw − y)>(Xw − y) +
1

2
αw>w.

This changes the normal equations for the solution from

w =
(
X>X

)−1
X>y

to
w = (X>X + αI)−1X>y.

The matrixX>X in the original normal equation is proportional to the covariance matrix
1
m
X>X. Using L2 regularization replaces this matrix with (X>X+αI)−1. The new matrix

is the same as the original one, but with the addition of α to the diagonal. The diagonal
entries of this matrix correspond to the variance of each input feature. We can see that
L2 regularization causes the learning algorithm to “perceive” the input X as having higher
variance, which makes it shrink the weights on features whose covariance with the output
target is low compared to this added variance.

TL;DR. The L2 regularization adds a penalty equal to the sum of the squared value of the
coefficients. The L2 regularization will force the parameters to be relatively small, the
bigger the penalization, the smaller (and the more robust) the coefficients are.

Exercise 3. What is L1 regularization? Why does L1 regularization result in sparse models?

Proof. Formally put, L1 regularization on the model parameter w is defined as:

Ω(θ) = ||w||1 =
∑
i

|wi|, (1)

that is, as the sum of absolute values of the individual parameters.

Note. As with L2 regularization, we could regularize the parameters towards a value that is
not zero, but instead towards some parameter value w(o). In that case the L1 regularization
would introduce the term Ω(θ) = ||w −w(o)||1 =

∑
i |wi − w

(o)
i |.
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Similar to L2 regularization, the strength of the regularization by scaling the penalty Ω
using a positive hyperparameter α. Thus, the regularized objective function J̃(w;X,y) is
given by

J̃(w;X,y) = α‖w‖1 + J(w;X,y),

with the corresponding gradient (actually, sub-gradient):

∇wJ̃(w;X,y) = α sign(w) +∇wJ(X,y;w)

where sign(w) is simply the sign of w applied element-wise.
By inspecting the above equation, we can see immediately that the effect of L1 regu-

larization is quite different from that of L2 regularization. Specifically, we can see that the
regularization contribution to the gradient no longer scales linearly with each wi ; instead it
is a constant factor with a sign equal to sign(wi). One consequence of this form of the gradi-
ent is that we will not necessarily see clean algebraic solutions to quadratic approximations
of J(w;X,y) as we did for L2 regularization.

Our simple linear model has a quadratic cost function that we can represent via its Taylor
series. Alternately, we could imagine that this is a truncated Taylor series approximating
the cost function of a more sophisticated model. The gradient in this setting is given by

∇wĴ(w) = H (w −w∗)

where, again, H is the Hessian matrix of J with respect to w evaluated at w∗.
Because the L1 penalty does not admit clean algebraic expressions in the case of a fully

general Hessian, we will also make the further simplifying assumption that the Hessian is
diagonal, H = diag([H1,1, . . . , Hn,n]), where each Hi,i > 0. This assumption holds if the data
for the linear regression problem has been preprocessed to remove all correlation between
the input features, which may be accomplished using PCA.

Our quadratic approximation of the L1 regularized objective function decomposes into a
sum over the parameters:

Ĵ(w;X,y) = J (w∗;X,y) +
∑
i

[
1

2
Hi,i (wi −w∗i )

2 + α |wi|
]
.

The problem of minimizing this approximate cost function has an analytic solution (for
each dimension i), with the following form:

wi = sign (w∗i ) max

{
|w∗i | −

α

Hi,i

, 0

}
.

Consider the situation where w∗i > 0 for all i. There are two possible outcomes:

1. The case where w∗i ≤ α
Hi,i

. Here the optimal value of wi under the regularized objective

is simply wi = 0. This occurs because the contribution of J(w;X,y) to the regularized
objective J(w;X,y) is overwhelmed—in the direction i— by the L1 regularization
which pushes the value of wi to zero.
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2. The case where w∗i >
α
Hi,i

. In this case, the regularization does not move the optimal

value of wi to zero but instead it just shifts it in that direction by a distance equal to
α
Hi,i

.

A similar process happens when w∗i < 0, but with the L1 penalty making wi less negative
by α

Hi,i
, or 0.

In comparison to L2 regularization, L1 regularization results in a solution that is more
sparse. Sparsity in this context refers to the fact that some parameters have an optimal
value of zero. The sparsity of L1 regularization is a qualitatively different behavior than
arises with L2 regularization. While w̃ = Q(Λ + αI)−1ΛQ>w∗ gave the solution w̃ for L2

regularization, if we revisit that equation using the assumption of a diagonal and positive
definite Hessian H that we introduced for our analysis of L1 regularization, we find that
w̃i =

Hi,i

Hi,i+α
w∗i . If w∗i was nonzero, the w̃i remains nonzero. This demonstrates that L2

regularization does not cause the parameters to become sparse, while L1 regularization may
do so for large enough α.

Note. The sparsity property induced by L1 regularization has been used extensively as a
feature selection mechanism. Feature selection simplifies a machine learning problem by
choosing which subset of the available features should be used. In particular, the well known
LASSO (Tibshirani , 1995) (least absolute shrinkage and selection operator) model integrates
an L1 penalty with a linear model and a least squares cost function. The L1 penalty causes a
subset of the weights to become zero, suggesting that the corresponding features may safely
be discarded.

TL;DR. The L1 regularization adds a penalty equal to the sum of the absolute value of the
coefficients. The L1 regularization will shrink some parameters to zero. Hence some
variables will not play any role in the model, L1 regression can be seen as a way to select
features in a model. More on this here and here too.

Exercise 4. Compare L1 and L2 regularization.

Proof. In a nutshell,

L2 Regularization L1 Regularization
Computationally efficient due to Computationally inefficient

having analytic solutions on non-sparse cases
Non-sparse outputs Sparse outputs
No feature selection Built-in feature Selection

Table 1: Differences between L1 and L2 Regularization

This geometric interpretation shows how with L1 regularization one of the weights β1 in
this case will be 0, while with L2 regularization β1 will be close to 0.

Exercise 5. What is Elastic-net regularization?
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Proof. The elastic-net regularization linearly combines the L1 and L2 penalties of the lasso
and ridge regularization methods. Formally put, the elastic-net regularization on the model
parameter w is defined as:

Ω(θ) = ||w||1 +
1

2
||w||22, (2)

which has the following objective function:

J̃(w;X,y) =
α2

2
w>w + α1||w||+ J(w;X,y),

with the corresponding gradient (technically, sub-gradient):

∇wJ̃(w;X,y) = α2w + α1 sign(w) +∇wJ(X,y;w).

The elastic-net regularization method overcomes the limitations of the LASSO. When
LASSO is used with high-dimensional data with few examples—large p and small n, it will
selects at most n variables before saturating. In addition, if there is a group of highly
correlated variables, then the LASSO tends to select one variable from a group and ignore
the others. To overcome these limitations, the elastic net adds a quadratic part to the
penalty (the ridge regression term 1

2
||w||22), which makes the loss function strongly convex

and therefore, has a unique minimum.
Meanwhile, the naive version of elastic net method finds an estimator in a two-stage

procedure: first for each fixed α2 it finds the ridge regression coefficients, and then does a
LASSO type shrinkage. This kind of estimation incurs a double amount of shrinkage, which
leads to increased bias and poor predictions. To improve the prediction performance, the
authors rescale the coefficients of the naive version of elastic net by multiplying the estimated
coefficients by (1 + α2).

Examples of where the elastic net regularization method has been applied are:

• Support vector machine

• Metric learning

• Portfolio optimization
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Figure 3: LASSO, Ridge and Elastic-Net geometric interpretations
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2 Extras

Exercise 6. When to use Regularization for overfitting?

Proof. Traditional methods like cross-validation, stepwise regression to handle overfitting
and perform feature selection work well with a small set of features, but these techniques
(regularization) are a great alternative when we are dealing with a large set of features.

Exercise 7. What does Regularization achieve?

Proof. A standard least squares model tends to have some variance in it, i.e. this model won’t
generalize well for a data set different than its training data. Regularization, significantly
reduces the variance of the model, without substantial increase in its bias. So
the tuning parameter α, used in the regularization techniques described above, controls the
impact on bias and variance. As the value of α rises, it reduces the value of coefficients
and thus reducing the variance. Till a point, this increase in α is beneficial as it
is only reducing the variance(hence avoiding overfitting), without loosing any
important properties in the data. But after certain value, the model starts loosing
important properties, giving rise to bias in the model and thus underfitting. Therefore, the
value of α should be carefully selected.
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