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Abstract

Stemming from the 1986 Shibata paper, the relationship between sparse estimators and
the correct selection of variables as well as the error of the estimation is examined. Already
examined in a previous paper, On the “Degrees of Freedom" of the Lasso, the author uses either
BIC or AIC to select A\, and finds through simulations that BIC performs better to recover the
correct support of 8 than AIC. While this is true, further examination is necessary to see if
subsequent inference can be determined. This paper attempts to show that even though BIC
will give a better choice to recover the correct support of 8, AIC will yield a higher power in
test.

1 Introduction

Before diving into sparse estimators, it is prudent to understand Ritei Shibata’s paper "Consis-
tency of Model Selection and Parameter estimation." Shibata bridges the relation between the
consistency of model selection and that of parameter estimation after a model has been selected.
He further demonstrates that if model selection is consistent, then the least order of consistency of
the parameter estimate becomes lower than /n [5]. He ultimately proves that model selection is
achieved at the cost of a lower order of consistency of the resulting estimate of parameters in some
parameter domain [5]. This is an important starting block for sparse estimators because sparsity
removes the zero terms from a vector and only the non-zero terms remains—thereby reducing its
dimensionality and lowering its order of consistency.

In this paper, the relationship between sparse estimators and the correct selection of variables
as well as the error of the estimation is examined. Let’s consider the problem of choosing A in a
penalized regression problem in which

B = argming(||Y — X312 + M5]1)

In order to understand the problem, we must first highlight the three different notions of asymptotic
convergence: consistency of the coeflicient vector 3, sparsistency—which in terms of model selection
aims to select the correct set of non-zero coefficients, and predictive risk consistency (presistency).

1.1 Consistency

When discussing the quality of estimators in statistics, it is imperative to understand these three
common descriptions: consistency, sparsistency, and presistency. Let’s review the concepts under
the context of linear regression. Suppose that the data (X1,Y7),...,(X,,Y,) where

Y, =B Xi + e,

Y; eR, X; e R% and 8 € R Let 3= (Bi,...,B4) be an estimator of 3 = (61, .., 84).
We define consistency of 8 such that

16 -8l 50

as n — o0.



1.2 Sparsistency

Let’s start by defining the support of 8 to be the location of the non-zero elements:

supp(8) = {j : B; # 0}.
Then /3’ is sparsistent if

P(supp(53) = supp(f)) — 1

as n — o0.

1.3 Presistency
Let (X,Y) be a new pair. The predictive risk of g is

R(B) = B(Y — XTB)2.
Let B,, be some set of ‘s and let 5} be the best 8 in B,. That is, 8 minimizes R(/) subject
to 8 € B,,. Then f is persistent if

A~ * P
R(B) — R(B,) = 0.
This essentially says that B predicts nearly as well as the best choice of 3.

2 The Lasso

Moreover, the Lasso algorithm fits the three described qualities. But what is the Lasso algorithm?

2.1 The Lasso Estimator

The Lasso estimator—least absolute shrinkage and selection operator—is a commonly used re-
gression analysis method. It performs variable selection and regularization to best interpret and
predict statistical models. Moreover, its objective is to solve:
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. 1 .
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Where t is the free parameter that determines how strict the regularization should be, N is the
number of cases, y; be the outcome and x; := (x1,x2) be the covariate vector up until the ith case.
It is commonly found in this form:
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where the focus to pick the appropriate \.

2.2 Choice of )\

However, the issue is the choice of A has to be different for sparsistency than for consistency and
presistency. In Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using (-
Constrained Quadratic Programming (Lasso) 7], Wainwright establishes that a larger A (let’s call
it \o) is required to achieve correct model selection. Yet, this Ag shrinks the non-zero coefficients
too much towards zero. Therefore, a smaller A (call it A1) is usually chosen to minimize presistency
and achieve consistency.

2.3 Rates of Convergence

In Sparsity and the Lasso, Tibshirani discusses the rates of convergence, and shows that Ay >
cov/nlogp, while Ay = O(o+/nlogp). He also mentions the primal-dual witness method related
to the solution of the lasso dual problem. However, it is not a practical algorithm for finding a
solution because it requires knowledge of the true support and signs. It instead should be called
“primal-subgradient witness method" [6].



2.4 Performing BIC and AIC on Lasso

When performing model selection amongst a set of models, there needs to be a sort of criteria to
select the correct one. Hence, Akaike information criteria (AIC) and Bayesian information criteria
(BIC) were created. Imagine a set of statistical models for some data. Call k the number of
estimated parameters in the model and let L be the maximum value of the likelihood function for

the model. Then AIC is defined as:
AIC = 2k — 2In(L)

The preferred model is the one with the lowest AIC value. While AIC rewards goodness of
fit—thereby allowing for larger number of parameters, it also includes a penalty that discourages
over-fitting. However, for BIC the penalty term is a lot larger than the penalty for AIC as it
depends on n, the number of data points, and k.

BIC is formally defined as:

BIC = In(n)k — 2In(L)

In On the “Degrees of Freedom” of the Lasso, Tibshirani uses either BIC or AIC to select A, and
finds through simulations that BIC performs better to recover the correct support of g than AIC.
However, this is specific to linear regression. Tibshirani states that his algorithm for performing
BIC or AIC with the Lasso is used specifically in the context of linear regression. His algorithm is
thereby called Adaptive Lasso Shrinkage, which shrinks the data and performs the Lasso algorithm
on it. His equation for AIC is:
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And his equation for BIC is:

— |2 og(n) +

Both are used later in the experiment section. In order to go about analyzing the sparse data
(whose coefficients are non-zero), an experiment must be generated to demonstrate the use of BIC
versus AIC and the subsequent information. More importantly, what will be shown is in terms of
the power of the test: Bﬁmc > Bf?szc'

3 The Experiment

Going forward, there are a couple of important declarations that need to be stated. Firstly, the
Adaptive Lasso Shrinkage for performing BIC or AIC will be utilized. Secondly, for the experiment,
time series regression data is used to build a linear model—in particular credit default rates. This is
done because economic data is usually collected by passive observation without the aid of controlled
experiments. So modeling the data via linear regression is shown to be extremely useful and will
help illuminate the algorithm’s effect on modeling sparse data in a linear regression fashion. More
importantly, we will use the Adaptive Lasso algorithm to yield the AIC and BIC from the data,
which will help select the appropriate A. After, the power of the test of AIC versus the power of
the test of BIC will be determined.

Note Bene: The data was borrowed for the end purpose of the power of the test of AIC versus
the power of the test of BIC. There is no fore bound conclusion on the credit default rates.

3.1 Data

Consider a simple multiple linear regression model of credit default rates. The data on investment-
grade corporate bond defaults, as well as data on four potential predictors for the years 1984 to
2004 (measured for year t) are as follows [1]:

AGE: Percentage of investment-grade bond issuers first rated 3 years ago.

BBB: Percentage of investment-grade bond issuers with a Standard and Poor’s credit rating
of BBB, the lowest investment grade.

CPF': One-year-ahead forecast of the change in corporate profits, adjusted for inflation.

SPR: Spread between corporate bond yields and those of comparable government bonds.
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Figure 2: Graph of Response level vs Year
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The response, measured for year t+1, is IGD—default rate on investment-grade corporate
bonds.

There are twenty one samples for each predictor. Each predictor was padded with an additional
twenty one zeros so the adaptive lasso algorithm could work its magic.



3.2 Methodology

Let’s assume the data z is modeled by F, on R%. D C [d], where d are the signal dimensions
on which F}, is non-zero. The model selection estimators are D Arc and lA)B 1c for AIC and BIC
scoring respectively.

Hence, if we assume that ' = X + ¢, then:

Hy:F,=F

H,:F,#F

3.3 Results

Before calculating the BIC or AIC scores, a t-test was undertook on the [ coefficients to yield
several p-values. The § coefficient values were generated from a pre-installed penalized package on
MATLAB’s main drive [3]. The data was fed in—in this case each predictor’s data—and outputted
were the [ values. Setting the threshold («) to 0.05, the aim was to determine whether to reject
the initial hypothesis or to fail to reject the initial hypothesis.

Let’s pick the first three 8 values for AGE, BBB, CPF, and SPR and show their corresponding
p-values.

Table 1: 8 values for AGE, BBB, CPF, SPR
AGE | BBB CPF SPR

£1 | 0.0492 | 0.0493 | 0.0493 | 0.0493
B | 0.0444 | 0.0448 | 0.0498 | 0.0449
B3 | 0.0401 | 0.0407 | 0.0502 | 0.0408

Table 2: p-values values for AGE, BBB, CPF, SPR
AGE | BBB CPF SPR

p-value for 57 | 0.4998 | 0.5000 | 0.5000 | 0.4998
p-value for By | 0.4829 | 0.4959 | 0.5046 | 0.4421
p-value for B3 | 0.4641 | 0.4915 | 0.5082 | 0.3797

Clearly, at a significance level of 0.05, all the p-values for each predictor failed to be rejected
because they are all greater than a.

Next, the AIC and BIC score were calculated for each predictor. To do this, MATLAB has
a pre-installed penalized package on its main drive [3]. The penalized package is an efficient
MATLAB toolbox for penalized maximum likelihood. It outputs all the estimator values (f) AIC
and Dp 1¢) for BIC and AIC scoring as well as their associated A values in an n x 1 column vectors.
Fed in are the four predictors (AGE, BBB, CPF, SPR) and outputted is Table 1.

Table 3: Information Criteria Results for each Predictor
AGE BBB CPF SPR

AIC | 7.6841 | 7.018 | 7.8140 | 7.7069
BIC | 4.208 | 4.2264 | 4.3387 | 4.2315

Secondly, amongst each AIC or BIC score is a corresponding A value. Hence the most optimal
A would have the lowest score. This is represented by Table 2. The package also yielding the
optimal A value.

Thirdly, if not most importantly, the B values—power of the test—for the estimators Darc
and Dpc were calculated for each predicator and shown in Table 5. One important fact, these
,5’ ’s were calculated for fifty samples. They were calculated via a two-tailed ¢-test comparing each
of the estimator’s distribution to a value two standard deviations out—both estimators have the
same variance. This was done because the estimators themselves are being compared not the actual
models. Hence, results were computed and shown in Table 5. Lastly, Table 6 performs the same
task as Table 5 except with a larger number of samples.



Table 4: Corresponding A values for each Predictor based on BIC/ AIC
‘ AGE ‘ BBB ‘ CPF ‘ SPR
A [ 0.002 | 0.0079 | 0.0022 | 0.0002

Table 5: B Parce and B DPric for each Predictor for 50 Samples

AGE BBB CPF SPR
Bh e | 0209 x1075 | 0 0.156 x 1074 | -2.3733 x 10~ 7
B,jm 0.140 x 1076 | 0.2365 x 1076 | 0.573 x 10~% | 5.7416 x 108

Last, but not least, are a couple of the log-likelihoods of the four predictors versus their respec-
tive lambda values.
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Figure 3: Graph of Log Likelihood vs Lambda Values



Table 6: Bf)/uc and B[)BIC for each Predictor for 2000 Samples

AGE BBB CPF SPR
Br 0 1.75x 1075 | 0 -7.629 x 106
Darc
B 0.5497 x 1075 | 0 0.344x 1072 | 0
Dprc
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Figure 4: Graph of Log Likelihood vs Lambda Values

4 Discussion and Analysis

To begin the analysis, take notice of Table 3. As per [6], BIC yields a lower score than AIC when
recovering the support of [ for all the predictors. And accordingly, in Table 4 one can see the
optimal A values are also linked with the lowest BIC and AIC score for each predictor. Table 5
shows the BbAIC and B Prre for each Predictor for 50 Samples. The first two predictors (AGE
and BBB) match the hypothesis: 8 Pare > 15} Dy However, the last two predictors yield contrary
results. In fact, one of the AIC scoring for the SPR predictor is negative, which raises the question:
what does this mean? At first glance, it could represent that the beta value is stronger than the
power. But on a second look, it means that the A optimal is closer to 0 (as seen in Table 4),
so therefore this will throw off the power of the test. Even when observing Table 6 with 2,000
samples, the fp  is still negative. However, unlike the CPR’s BDAIC in Table 5, the CPR’s

B/ﬁmc in Table 6 are greater than the CPR’s B/ﬁBIc' Note that the first two predictors (AGE and
BBB) still match the hypothesis.

Included are the two graphs (BBB and SPR) of the log likelihood versus the A values. Both
graphs are monotonically decreasing as expected. However, one slight difference is the range of A
values. In Figure 4, the X\ values cutoff before reaching 0.1 while the A values in Figure 5 cutoff
before reaching 1. As seen in Table 4, three of the four predictor A values are in thousandth values
except for SPR—it is in the ten-thousandth. This extremely small A\ choice illustrates that small
A yields a low power of the test in Table 5 is almost 0. That said, it does not explain why the



Blﬁmc > Bf)uc for both fifty and two thousand samples. It may be safe to call this result an
outlier, but more tests must be conducted to confidently conclude this.

Another aspect that has been examined from "Model Selection" [2] was the mean square error
of the each of the predictor’s BIC and AIC scores. The initial hypothesis is MSE(fiarc) <
MSE(jiprc) where 4 is the estimator for the mean. This would seem to be counter-intuitive
because BIC contains less information than AIC, so hence there would be less variability and
would result in lower mean squared error. Using the four predictor’s scores, a table was yielded to
compare the means, and then MSE was computed.

Table 7: Mean AIC and BIC values for the 4 Predictors
AGE BBB CPF SPR

tarc | 7.6996 | 7.7156 | 7.8156 | 7.7203
uprc | 4.2243 | 4.2402 | 4.3403 | 4.2450

As one can see in Table 7 are the mean values for all four predictors: AGE, BBB, CPF, and
SPR. All values are generally around the same—with the lowest BIC value of 4.2243 and the largest
BIC value of 4.3403 and similarly for AIC the lowest value of 7.6996 and the largest 7.8156. Now,
mean squared error measures the average of the sqaures of errors. Simply put:

IS,
MSE—nZ(x )

i=1

, where x is the measured mean, Z is the desired mean, and n is the number of samples. Now to
prove this result, the MSE will be performed for both BIC and AIC using two different desired
values—8 and 6.5 respectively—and show in Table 8.

Table 8: MSE for AIC and BIC
Desired Mean | 8 6.5

MSE(fia;c) | 0.0708 | 1.5342
MSE(fip;c) | 13.9714 | 5.0087

Clearly, the MSE(jiprc) > MSE(fiarc) from the data provided. [iprc and jiarc are the
estimators used for the desired mean. However, this is just a base case for the one dimensional
case. More simulations are needed for the higher dimensional case to substantiate this.

5 Further Work

In Relazed Lasso, Meinshausen discusses an alternative method is select A via cross-validation [4].
We will compute this and compare the A values to the previous A accordingly:

Table 9: Corresponding A¢y values for each Predictor
‘ AGE ‘ BBB ‘ CPF ‘ SPR
Acv ‘ 0.0046 ‘ 0.0383 ‘ 0.0561 ‘ 5.7737 x 1077

As one can compare, Table 7’s values are not at all the same as Table 4’s. In fact, Table 7’s
values are all larger. However, while this might obvious, a ¢-test must be conducted to determine
the statistical significance. The § from the Cross-Validation per each predictor must be compared
with the 8 from the previous sections (which match the corresponding A value in relation to BIC
and AIC values in Table 3).

Setting the threshold («) again to 0.05, it is obvious to see that all the values are greater than
the threshold and hence fail to reject that that these are not statistically significant values (see
Table 10). Hence, cross-validation does in fact find the minimum .

As seen in Figure 5 below, the thin line displays the optimal A that will minimize the penalty
term. However, while this achieves the goal of minimizing the predictive risk, it tends to to include
many noise variables in the selected solution [8]. In addition, the accuracy of prediction (in terms
of squared error loss) was shown to be negatively affected by the presence of many noise variables,



Table 10: p-values for comparing A¢y against A
‘ AGE ‘ BBB ‘ CPF ‘ SPR
p-values | 0.6776 ‘ 0.2886 ‘ 0.5000 ‘ 0.5000
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Figure 5: AGE Graph of Cross Validation vs Lambda Values

particularly for high signal-to-noise ratios [8]. Hence, Cross-Validation is a useful technique, but
has its own trade-offs as well.

Although it is reasonable to think that the hypothesis has been met as the sample size has
increased, there is still more to consider. This experiment conducted was simply a one dimen-
sional case of gathering the power of the test. Another experiment must be conducted in the two
dimensional-case. It will be as follows:

Let’s assume the data is x is modeled by F, and the data is y is modeled by F, all in R
F.,F, € mC M in which M is the model. Since F.,F, € m, then there must have the same
coefficients: ¢, = cy.

Hence then, the idea would be to use BIC to find the estimator ¢ — ¢

Hy: F, = F,
H,:F,#F,

And ultimately, the goal would be: B@ are > B Ppio Bven though BIC will give the better
choice, AIC will yield a higher power of test. This would be a future iteration of this paper should
the case arise. A t-test for § would be necessary to yield the p-value which would determine
whether to reject or fail to reject the initial hypothesis.
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6 Conclusion

In this paper, the relationship between sparse estimators and the correct selection of variables
as well as the error of the estimation was examined. For a one-dimensional case, the evidence
suggested that though BIC will give a better choice to recover the correct support of 5, AIC will
yield a higher power in test. To compute this, four linear regression models were all compared. An
AIC and BIC was yielded for each. Next, the power of the test (B values) were calculated. While
the data shown implies that the hypothesis is correct, a two dimensional experiment would only
provide more insight. In addition, the mean square error of the estimator for the AIC and BIC was
compared, which yielded that the mean square error of the BIC was greater than the mean square
error of the AIC. This paper’s overarching motivation was to start the process to show that better
model selection can be achieved with the cost of more bias on the parameter estimates. However,
while this result was never achieved in this paper there will be subsequent additions to ultimately
go about to prove this goal.
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