
Support Vector Machine Review

Akhil Vasvani

March 2019

1 Questions

Exercise 1. How can the SVM optimization function be derived from the logistic regression
optimization function?

Proof. Recall that logistic regression is defined as the sigmoid function:

g(z) = σ(θ>x) =
1

1 + e−(θ
>x)

, (1)

where θ are our weights and x is our input. So j can be positive non-zero integer

Note. The input x is a design matrix of shape j × i and θ has a shape of j × 1

Now, logistic regression outputs probabilities that are used to make a classification. In
laymen’s terms, if the outputted probability is greater than a threshold than we pick one
class while if the outputted probability is less than a threshold than we pick the other class.

More formally put, say y is our class predictor and there are two classes: 0, 1:
If y = 1, then we want σ(θ>x) ≈ 1→ θ>x� 0.
If y = 0, then we want σ(θ>x) ≈ 0→ θ>x� 0.
Because there are two classes, this feels extremely similar to a Bernoulli distribution.

Borrowing that distribution, and modifying it slightly we can arrive at the conditional prob-
ability P (y | x;θ) in order to predict y given x:

P (y = y | x;θ) = P (y = y;σ(θ>x)) = (σ(θ>x))y(1−σ(θ>x))1−y =
(1

1 + e−θ
>x

)y(
1− 1

1 + e−θ
>x

)1−y
.

(2)
Now, our goal is to find the optimal θ to satisfy the above equation, so we the maximum
likelihood procedure to find θML:

θML = arg max
θ

P (Y |X;θ). (3)

We can also further assume that each example is i.i.d (identically and independently dis-
tributed), then this can be decomposed down into

θML = arg max
θ

m∑
i=1

logP (y(i) | x(i);θ) = −arg min
θ

m∑
i=1

log
[
(σ(θ>x(i)))y

(i)

(1−σ(θ>x(i)))1−y
(i)
]

1

= −arg min
θ

m∑
i=1

y(i) log(σ(θ>x(i))) + (1− y(i)) log(1− σ(θ>x(i)))

= −arg min
θ

m∑
i=1

y(i) log
[1

1 + e−θ
>x(i)

]
+ (1− y(i)) log

[
1− 1

1 + e−θ
>x(i)

]
.

However, note that if we sum all the training examples m (the total number of rows),
we will get mθML, so we must divide the above equation by m. This will result in an
unregularized logistic regression:

arg min
θ
J(θ) = arg min

θ

(
− 1

m

m∑
i=1

y(i) log
[1

1 + e−θ
>x(i)

]
+(1−y(i)) log

[
1− 1

1 + e−θ
>x(i)

])
(4)

However, let’s say the number of training example we have is small so we want to add
some penalty for large θ values, so we impose a L2 regularization term λ

2
||θ||2. Remember,

we also divided the entire equation by m so we must add that into our regularization term
λ
2m
||θ||2 = λ

2m

∑n
j=1 θ

2
j . Next, we add that onto our cost function J(θ):

arg min
θ
J(θ) = arg min

θ

(
− 1

m

m∑
i=1

y(i) log
[1

1 + e−θ
>x(i)

]
+ (1− y(i)) log

[
1− 1

1 + e−θ
>x(i)

]
+

λ

2m

n∑
j=1

θ2j

)
.

(5)

Note. n represents the number of features. The bounds for the summation for the regular-
ization term are from j = 1 to n because we do not regularize the θ0 term and because we
can set which weights we want to penalize.

Now, let’s say we set cost1(θ
>x(i)) = − log(σ(θ>x(i))) and cost0(θ

>x(i)) = − log(1 −
σ(θ>x(i))) and plugged that back in:

→ arg min
θ

(1

m

[m∑
i=1

y(i)cost1(θ
>x(i)) + (1− y(i))cost0(θ>x(i))

]
+

λ

2m

n∑
j=1

θ2j

)
.

Let’s remove 1
m

because it does not matter and multiply everything instead by: 1
λ
.

Example. Let’s do example to explain why we can do this. Say,

min
u

(u− 5)2 + 1→ 2u− 10 = 0→ u = 5.

Now,
min
u

10(u− 5)2 + 10→ 20u− 100 = 0→ u = 5.

Regardless of the multiplicative constant, the minimum will always be 5.

2

⇒ arg min
θ

(
C

m∑
i=1

y(i)cost1(θ
>x(i)) + (1− y(i))cost0(θ>x(i)) +

1

2

n∑
j=1

θ2j

)
,

where C = 1
λ
.

Thus, we arrive at the cost function for Support Vector Machines (SVM). In com-
parison to logistic regression, it does not output a probability but we get to know directly
whether the prediction is in class 1 or class 0.

σ(θ>x) =

{
1 if θ>x ≥ 0
0 other

}
Plotting the cost1 and cost0 function looks something like this:

Figure 1: cost1 (left), cost0 (right)

Thus, if we really want:

y(i) =

{
1 θ>x ≥ 1
0 θ>x ≤ −1

}
What we have done is just have simplified the cost function in order to use geometry for

further steps.

Exercise 2. What is a large margin classifier? What is the mathematical intuition of a
large margin classifier?

Proof. In the figure below, there is some data plotted between two variables.
You wish to find some type of line separating the plotted data into two groups, so that

you easily distinguish between the two. More formally put, the line we are creating is called
a decision boundary. One side of the decision boundary will belong to one class and all
those on the other side will belong to the other class—call one class (label 1) and the other
class (label -1).

Note. A decision boundary or decision surface is a hypersurface that partitions the under-
lying vector space into two sets, one for each class. So technically, a decision boundary does
not always have to be line. It could be a plane. We will see more of that in a little bit.

3

Figure 2: Linearly separable data

Now, how do we go about creating this decision boundary? The function of a line is
y = ax + b. Let’s rename x with x1 and y with x2 and rewrite this equation in standard
form: ax1 − x2 + b = 0.

If we define x = (x1, x2) and w = (a,−1), we get:

w · x+ b = 0. (6)

Once we have the decision boundary, we can then use it to make predictions. We define
the hypothesis function h as:

h(xi) =

{
+1 if w ·x+ b ≥ 0
-1 if w ·x+ b < 0

}
The point above or on the line will be classified as class +1, and the point below the line

will be classified as class -1.
Then, the question arises what happens when there are more than three dimensions.

What do we use to separate the multi-dimensional data? We use a hyperplane, a type of
decision boundary. And the equation of the hyperplane is the exact same as the one above,
which in fact works for any number of dimensions.

4

Let’s say you have found a hyperplane that completely separates the two classes in your
training set. We expect that when new data comes along (i.e. your test set), the new data
will look like your training data. Points that should be classified as one class or the other
should lie near the points in your training data with the corresponding class. Now, if your
hyperplane is oriented such that it is close to some of the points in your training set, there’s
a good chance that the new data will lie on the wrong side of the hyperplane, even if the
new points lie close to training examples of the correct class.

Therefore, we want to find the hyperplane with the maximum margin. In laymen’s
terms, find a hyperplane that divides your data properly, but is also as far as possible from
your data points. That way, when new data comes in, even if it is a little closer to the wrong
class than the training points, it will still lie on the right side of the hyperplane.

Note. One important note that should be mentioned is linear separability. Linear sepa-
rable means that the data (in the two-dimensional case) can be separated by a line or can

5

be separated by a hyperplane (in the n-dimensional case where n > 2). However, there are
times when the data is non-linearly separable—there does not exist a line to separate the
data in the two dimensional case.

The goal of the SVM learning algorithm is to find a hyperplane which could separate the
data accurately. There might be many such hyperplanes. And we need to find the best one,
which is often referred as the optimal hyperplane.

TL;DR. A large margin classifier is a classifier which is able to give an associated distance
from the decision boundary for each example. For instance, if a linear classifier is used,
the distance (typically euclidean distance, though others may be used) of an example from
the separating hyperplane is the margin of that example. If your data is separable, then
there are infinitely many hyperplanes that will separate it. SVM (and some other classifiers)
optimizes for the one with the maximum margin.

Exercise 3. What are support vectors?

Note. The θ parameter is the SAME as the w parameter.

Proof. Let θ be the minimizer of the SVM cost function for some training dataset with m
examples: (x(i), y(i)). Then for i, ...,m there exists αi ≥ 0 such that the optimum θ can be
written:

θ =
m∑
i=1

αiy
(i)x(i)

So, if
αi = 0⇒ y(i)θx(i) ≥ 1

αi = C ⇒ y(i)θx(i) ≤ 1.

All points on the wrong side of the margin! Where C is constant (say its a large value).
But,

0 ≤ αi ≤ C ⇒ y(i)θx(i) = 1.

These are all points on the margin.
Therefore, the θ vector is completely defined by training examples whose αis are nonzero

θ =
m∑
i=1

αiy
(i)x(i).

These examples are called support vectors.

6

7

Exercise 4. Why SVM is an example of a large margin classifier?

Proof. SVM is an example of a large margin classifier because it places the decision boundary
such that it maximizes the distance between two clusters—the positive and negative examples
(equal distant from the boundary lines), which avoids overfitting.

Let’s consider a linear SVM that separates two classes y = 1, y = −1. It will find a
hyperplane such that: w · x − b = 0, where x are the points on the plane, and w is the
normal vector to the plane. The closest points from the two categories will be found when
w · x− b = 1 and w · x− b = −1, respectively.

Because this is a linear separation, it must be the case that halfway between the two edges,
the margin is maximized (which is the optimal hyperplane). Hence, this is why w ·x− b = 0
maximizes the margin. Therefore, SVM is an example of a large margin classifier.

8

9

Note. If you for some reason do not want to maximize the margin, you can change the zero
for a number that better suits your problem.

Also b
||w|| is the offset from the origin and 2

||w|| is the width of the margin.

Exercise 5. Since SVM being a large margin classifier, is it influenced by outliers?

Proof. Yes, SVM is influenced by outliers if C is large. Otherwise it is not.

Note. As C gets larger and larger, the decision boundary goes from a fully vertical line to
a horizontal line.

10

Exercise 6. What is the role of C in SVM?

Proof. The C parameter tells the SVM optimization how much you want to avoid mis-
classifying each training example. For large values of C, the optimization will choose a
smaller-margin hyperplane if that hyperplane does a better job of getting all the training
points classified correctly. Conversely, a very small value of C will cause the optimizer to
look for a larger-margin separating hyperplane, even if that hyperplane misclassifies more
points. For very tiny values of C, you should get misclassified examples, often even if your
training data is linearly separable.

Exercise 7. In SVM, what is the angle between the decision boundary and θ?

Proof. The angle between the decision boundary and θ is orthogonal (at 90◦).

Note. Note, this is a little confusing notation. The θ parameter we used in the cost function
is the same as the w parameter in the hyperplane equation.

Exercise 8. What is a kernel in SVM? Why do we use kernels in SVM?

Proof. Sometimes, your data in two dimensions is non-linearly separable.

Yet if we map it to a three-dimensional space using

φ : R2 → R3 (7)

11

(x1, x2)→ (z1, z2, z3) = (x21,
√

2x1x2, x
2
2) (8)

and if we try to linearly separate the mapped data, our decision boundaries will be hyper-
planes in R, of the form θ>z + b = 0 i.e. as a function of x they will be of the form

w1x
2
1 + w2

√
2x1x2 + w3x

2
2 = 0.

Now, let’s say we provide a test set (x(j),y(j)). Our goal is to predict y(j) = σ(θ>x(j)),
where we define θ to be made up from our support vectors θ =

∑m
i αiyix

(i) where (x(i),y(i))
is our training set made up of m examples. Therefore we can represent our hyperplane
equation as the dot product of all the support vectors and the test examples,

θ>x(j) =
∑
i

αiyix
(i) · x(j).

which is basically the dot products between training examples and the new (test) example
x(j). This is true even if we map examples to a high dimensional space

θ>φ(x(j)) =
∑
i

αiyiφ(x(i))> · φ(x(j)).

Now, we will call this modified inner product φ(x(i))> · φ(x(j)) = K(x(i),x(j)) a kernel.
We shall also call K the kernel matrix because it contains the value of the kernel for every
pair of data points, thus using the same letter both for the function and its matrix.

Note. The kernel matrix K is known as Gram Matrix

K =

x(1)>x(1) x(1)>x(2) ...
x(2)>x(1) ...

...

 = X(i) ·X(j)>.

The Gram matrix has an interesting property: it is a positive semidefinite matrix

Now, maping our data via φ and computing the inner product for each pair of x(i)) and
x(j)) to build the Gram matrix is very computational slow. But in fact, we can do it in one
operation, leaving the mapping completely implicit. We do not even need to know φ, all we
need to know is how to compute the modified inner product or the kernel. This is called the
kernel trick.

The kernel trick is powerful for two reasons. First it calculates the result of a dot product
performed in another space. We now have the ability to change the kernel function in
order to classify non-linearly separable data. Second, the kernel function k often admits an
implementation that is significantly more computational efficient than naively constructing
x vectors and explicitly taking their dot product.

There are multiple kernel types we could use to classify the data. Some of the most
popular ones are linear kernel, polynomial kernel, and RBF kernel.

The linear kernel is defined as: k(x(i),x(j)) = x(i) ·x(j). This is the same as the one we
used in the above discussion. In practice, you should know that a linear kernel works well
for text classification.

The polynomial kernel is defined as:

k(x(i),x(j)) = (x(i) · x(j) + c)d

12

This kernel contains two parameters: a constant c and a degree of freedom d. A d value
with 1 is just the linear kernel. A larger value of d will make the decision boundary more
complex and might result in overfitting.

The Radial Basis Function (RBF) kernel is defined as: k(u,v) = N (u− v; 0, σ2I).
The RBF kernel is also called the Gaussian kernel. It will result in a more complex decision
boundary. A small difference between u−v will make the model behave like a linear SVM. A
large difference between u−v will make the model heavily impacted by the support vectors
examples.

In practice, it is recommended to try RBF kernel first cause it normally performs well.

TL;DR. SVM algorithms use a set of mathematical functions that are defined as the kernel.
The function of kernel is to take data as input and transform it into the required form.
Different SVM algorithms use different types of kernel functions. These functions can be
different types. For example linear, nonlinear, polynomial, radial basis function (RBF), and
sigmoid. Introduce Kernel functions for sequence data, graphs, text, images, as well as
vectors. The most used type of kernel function is RBF. Because it has localized and finite
response along the entire x-axis. The kernel functions return the inner product between
two points in a suitable feature space. Thus by defining a notion of similarity, with little
computational cost even in very high-dimensional spaces.

Exercise 9. What is a similarity function in SVM? Why it is named so?

Proof. Now, let’s talk about a slightly different view of kernels. Intuitively, (and there are
things wrong with this intuition, but nevermind), if φ(x(i)) and φ(x(j)) are close together,
then we might expect K(x(i),x(j)) = φ(x(i))> ·φ(x(j)) to be large. Conversely, if φ(x(i)) and
φ(x(j)) are far apart—say nearly orthogonal to each other—then K(x(i),x(j)) = φ(x(i))> ·
φ(x(j)) will be small. So, we can think of K(x(i),x(j)) as some measurement of how similar
are φ(x(i)) and φ(x(j)), or of how similar are x(i) and x(j).

Given this intuition, suppose that for some learning problem that you are working on,
you have come up with some function K(x, z) that you think might be a reasonable measure
of how similar x and z are. For instance, perhaps you chose

K(x, z) = exp
(
− ||x− z||

2

2σ2

)
.

The Gaussian kernel gives a reasonable measure of x and z’s similarity, and is close to
1 when x and z are close, and near 0 when x and z are far apart. Given two vectors,
the similarity will diminish with the radius of σ. The distance between two objects is
”reweighted” by this radius parameter.

Note. Perform feature scaling before you using Gaussian kernel.

TL;DR. A very simple and intuitive way of thinking about kernels (at least for SVMs) is a
similarity function. Given two objects, the kernel outputs some similarity score. The objects
can be anything starting from two integers, two real valued vectors, trees whatever provided
that the kernel function knows how to compare them.

13

Exercise 10. How are the landmarks initially chosen in an SVM? How many and where?

Proof. To compute the landmarks we adapt the cost function to the following:

arg min
θ

(
C

m∑
i=1

y(i)cost1(θ
>f (i)) + (1− y(i))cost0(θ>f (i)) +

1

2

m∑
j=1

θ2j

)
,

in which we denote each feature as f .

Note. How to Choose Landmarks?
Suppose we have m training examples {(x(i), y(i))}. Now we just put a landmark at the

exactly same locations, i.e. l(i) = x(i) and we will end up with m landmarks l(i). Keep in
mind that for the regularizing part, instead of n (number of features) m (training examples)
should be used. This makes sense, since we want to calculate the landmarks which are
related to the examples.

Example. Suppose we have the following model:

θ0 + θ1f1 + θ2f2 + θ3f3 ≥ 0

And θ =

θ0
θ1
θ2
θ3

 =

−0.5

1
1
0

.

Say we have a x near l(1) (green one on the left). If we have f (1) ≈ 1,f (2) ≈ 0, and
f (3) ≈ 0, putting it to the model we get

θ0 + θ1f1 + θ2f2 + θ3f3 ≈ 0.5 + 1 = 0.5 ≥ 0,

so we predict y = 1.
Next, say we have a x close to l(3) (blue one on the bottom), so f (1) ≈ 0, f (2) ≈ 0, f (3) ≈ 1

and we have
θ0 + θ1f1 + θ2f2 + θ3f3 ≈ −0.5 < 0,

so we predict y = 0.

Exercise 11. Can we apply the kernel trick to logistic regression? Why is it not used in
practice then?

Proof. Yes, we can apply the kernel trick to logisitic regression and the classification perfor-
mance is almost identical in both cases. KLR (Kernal Logistic Regression) can provide
class probabilities whereas SVM is a deterministic classifier. KLR:

P (y = y | x;θ), where θ =
∑
i

αiφ(x(i)) =
∑
i

αiφ(x) · φ(x(i)) =
∑
i

αik(x,x(i))

14

P (y = y;σ(
∑
i

αik(x,x(i))) = (σ(
∑
i

αik(x,x(i)))y(1− σ(
∑
i

αik(x,x(i))))1−y =

(1

1 + e−
∑

i αik(x,x(i))

)y(
1− 1

1 + e−
∑

i αik(x,x(i))

)1−y
.

KLR has a natural extension to multi-class classification whereas in SVM, there are multiple
ways to extend it to multi-class classification (and it is still an area of research whether
there is a version which has provably superior qualities over the others). Surprisingly or
unsurprisingly, KLR also has optimal margin properties that the SVMs enjoy (well in the
limit at least)!

Note. Although it almost feels like kernel logistic regression is what you should be using,
there are certain advantages that SVMs enjoy:

1) KLR is computationally more expensive than SVM—O(N3) vs O(N2k) where k is
the number of support vectors.

2) The classifier in SVM is designed such that it is defined only in terms of the support
vectors, whereas in KLR, the classifier is defined over all the points and not just the support

15

vectors. This allows SVMs to enjoy some natural speed-ups (in terms of efficient code-
writing) that is hard to achieve for KLR.

Exercise 12. What is the difference between logistic regression and SVM without a kernel?

Proof. Only in implementation. One is much more efficient and has good optimization
packages.

Exercise 13. How does the SVM parameter C affect the bias/variance trade off?

Proof. Remember C = 1
λ
, so if λ increases there is a higher bias and lower variance. If λ

decreases, there is a lower bias, but higher variance.

Exercise 14. How does the SVM kernel parameter σ2 affect the bias/variance trade off?

Proof. For the SVM kernel parameter σ2—sometimes referred to as γ = 2σ2, as σ2 increases
the features (fi) vary more smoothly→ higher bias, lower variance. However, as σ2 decreases
the features (fi) vary less smoothly → lower bias, higher variance.

TL;DR. Another way to think about it is that the gamma parameter in SVM tuning signifies
the influence of points either near or far away from the hyperplane. For a low gamma, the
model will be too constrained and include all points of the training dataset, without really
capturing the shape. For a higher gamma, the model will capture the shape of the dataset
well.

Exercise 15. Can any similarity function be used for SVM?

Proof. No, the similarity function has to satify’s Mercer’s theorem.
Mercer’s Theorem:
A symmetric function K(x, y) can be expressed as an inner product 〈φ(x), φ(y)〉 for some

φ if and only if K(x, y) is positive semi-definite∫
K(x, y)g(x)g(y)dxdy ≥ 0, ∀g

or, equivalently:

K(x(1), x(1)) K(x(1), x(2)) ...
K(x(2), x(1))

...

 is positive semidefinite for any collection

{x(1), ..., x(n)}.

TL;DR. In order for a similarity function to be a valid (Mercer) kernel, it is necessary and
sufficient that for any {x(1), ..., x(m)}, (m <∞), the corresponding kernel matrix is symmetric
positive semi-definite. This is because it (Mercer’s Theorem) makes sure they run correctly
and do not diverge (to support optimization).

16

Exercise 16. Logistic regression vs. SVMs: When to use which one?

Proof. Suppose we have n number of features (x ∈ Rn+1) and m training samples.

Note. Defined an extra feature (f0 = 1) as an intercept term. Hence, we shall have n + 1
features.

• If n is large (relative to m):

∗ e.g. n = 10, 000, m ∈ [10, 1000]

∗ use Logisitc Regression

∗ or SVM without a kernel (linear kernel)

• If n is small and m is intermediate:

∗ e.g. n ∈ [1, 1000], m ∈ [10, 10000]

∗ use SVM with Gaussian kernel

• If n is small and m is large:

∗ e.g. n ∈ [1, 1000], m ≥ 50000

∗ SVM is too slow for that, so you will need to create/ add more features

∗ so use Logistic Regression or SVM without a kernel hat

Note. The key thing is that if there is a huge number of training examples, a Gaussian
kernel takes a long time The optimization problem of an SVM is a convex problem, so you
will always find the global minimum. However a Neural Network may work well for all these
settings, but it might be slower to train and it is non-convex, so you may find local optima
instead of a global minima.

Exercise 17. Give some situations where you will use an SVM over a RandomForest Ma-
chine Learning algorithm and vice-versa?

Proof. The performance depends on many factors

• the number of training instances

• the distribution of the data

• linear vs. non-linear problems

• input scale of the features

• the chosen hyperparameters

• how you validate/evaluate your model

17

In general, it is easier to train a well-performing Random Forest classifier since you have
to worry less about hyperparameter optimization. Due to the nature Random Forests, you
are less likely to overfit. You simply grow n trees on n bootstrap samples of the training set
on feature subspaces—using the majority vote, the estimate will be pretty robust.

Using Support Vector Machines, you have “more things” to “worry” about such as choos-
ing an appropriate kernel (poly, RBF, linear . . .), the regularization penalty, the regulariza-
tion strength, kernel parameters such as the poly degree or gamma, and so forth.

TL;DR. So, in short, Random Forests are much more automated and thus “easier” to train
compared to SVMs, but there are many examples in literature where SVMs outperform
Random Forests and vice versa on different datasets. So, if you like to compare these two,
make sure that you run a large enough grid search for the SVM and use nested cross-
validation to reduce the performance estimation bias.

2 Extra

Exercise 18. Hard-margin SVM vs Soft-margin SVM? What’s the difference?

Proof. Hard-margin SVM is used when the data is linearly separable. Say we have one
class (label 1) and other class (label -1), then our decision boundary can be described by the
following:

y(i) =

{
1 θ>x− b ≥ 1
-1 θ>x− b ≤ −1

}
,

which can be rewritten as y(i)(θ>x − b) ≥ 1, ∀ 1 ≤ i ≤ m (for a given training set m).
We can put this together to get the optimization problem:

”Minimize ‖θ‖ subject to y(i)(θ>x − b) ≥ 1 for i = 1, . . . ,m.” The θ and b that solve
this problem determine our classifier, x 7→ σ(θ · x− b).

Note.
min ||θ||

subject to y(i)(θ>x− b) ≥ 1

is equivalent to the following minimization problem:

min
1

2
||θ||2

subject to y(i)(θ>x− b) ≥ 1

The above statement is the SVM optimization problem. It is called a convex quadratic
optimization problem, which will help us find the global minima.

18

Now, as we determined sometimes our data is not linearly separable. We introduced the
idea of the kernel trick which allows us to map our features into a higher dimensional space
where it can be linearly separable. However, there was an important that needs to be asked
before using the kernel trick: why is your data non-linearly separable?

If your data contains some noise, then it might be non-linearly separable. So we shall em-
ploy the Soft Margin SVM. The Soft Margin SVM adds slack variables ζi to the constraints
of the optimization problem. The constraints now become:

y(i)(θ>x− b) ≥ 1− ζi, for i = 1, . . . ,m

Solving for ζi we get,

ζi ≥ 1− y(i)(θ>x− b), for i = 1, . . . ,m.

By adding the slack variables, when minimizing the objective function, it is possible to
satisfy the constraint even if the example does not meet the original constraint. The problem
is we can always choose a large enough value of ζ so that all the examples will satisfy the
constraints.

One technique to handle this is to use regularization. For example, we could use L1

regularization to penalize large values of ζ. The regularized optimization problem becomes:

min
θ,b,ζ

1

2
||θ||2 +

m∑
i=1

ζi

subject to y(i)(θ>x− b) ≥ 1− ζi, i = 1...m

Also, we want to make sure that we do not minimize the objective function by choosing
negative values of ζ. We add the constraints ζi ≥ 0 → 1 − y(i)(θ>x − b) ≥ 0. Now we can
rewrite this expression as in lieu of ζ:

max
(
0, 1− y(i)(θ>x− b)

)
.

We will put this this back into our optimization problem, multiply the summation by 1
m

,
and add multiply our L2 regularization term by λ:

arg min
θ

[1

m

m∑
i=1

max
(
0, 1− y(i)(θ>x− b)

)
+
λ

2
||θ||2

]
.

The λ determines the trade-off between increasing the margin size and ensuring that the
x(i) lie on the correct side of the margin. Thus, for sufficiently small values of λ, the second
term in the loss function will become negligible, hence, it will behave similar to the hard-
margin SVM, if the input data are linearly classifiable, but will still learn if a classification
rule is viable or not.

If the data is non-linearly seperable and it is not noisy, then you need to employ the
kernel trick.

Note. max
(
0, 1− y(i)(θ>x− b)

)
is called the hinge loss function.

19

Exercise 19. What is the difference between logistic regression and SVM?

Proof. Logistic regression assumes that the predictors are not sufficient to determine the
response variable, but determine a probability that is a logistic function of a linear combi-
nation of them. If there is a lot of noise in the data, logistic regression (usually fit with
maximum-likelihood techniques) is a great technique.

On the other hand, there are problems where you have thousands of dimensions and
the predictors do nearly-certainly determine the response, but in some hard-to-explicitly-
program way. An example would be image recognition. If you have a grayscale image, 100
by 100 pixels, you have 10,000 dimensions already. With various basis transforms (kernel
trick) you will be able to get a linear separator of the data.

Non-regularized logistic regression techniques do not work well (in fact, the fitted coef-
ficients diverge) when there is a separating hyperplane, because the maximum likelihood is
achieved by any separating plane, and there’s no guarantee that you will get the best one.
What you get is an extremely confident model with poor predictive power near the margin.

SVMs get you the best separating hyperplane, and they are efficient in high dimensional
spaces. They are similar to regularization in terms of trying to find the lowest-normed vector
that separates the data, but with a margin condition that favors choosing a good hyperplane.
A hard-margin SVM will find a hyperplane that separates all the data (if one exists) and
fail if there is none; soft-margin SVMs (generally preferred) do better when there’s noise in
the data.

Additionally, SVMs only consider points near the margin (support vectors). Logistic
regression considers all the points in the data set. Which you prefer depends on your problem.

Logistic regression is great in a low number of dimensions and when the predictors do
not suffice to give more than a probabilistic estimate of the response. SVMs do better when
there’s a higher number of dimensions, and especially on problems where the predictors do
certainly (or near-certainly) determine the responses.

20

