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Abstract—This paper examines the merits of utilizing discrete
wavelet transforms in filtering input financial data and various
decision making algorithms to buy, sell, or hold stocks. This
system shall be split into three components: the pre-processor,
the decision maker, and the post-processor. The pre-processor
utilizes the discrete wavelet transform, with a wavelet of our
choosing, to denoise the data. Next, the decision maker will rely
on component autocorrelation to label markets as bull or bear.
Finally, the post-processor shall use the states derived from the
decision maker to decide whether we buy, sell, or hold on a
certain day based on the input data.

Index Terms—finance, stocks, time series, wavelets, discrete
wavelet transform, kalman filter, hidden markov models

MOTIVATION

Our objective is to develop, or perhaps enhance, an asset
trading algorithm using the wavelet transform (in some way).
Research in this domain is incentivized by the possibility
of generating passive income through computer-automated
trading.

Information processing of signals, however, has itself be-
come an fundamental part of scientific activity in general,
finding its use in many different fields, finance being just one.
Signal prediction in particular is necessary in characterizing
certain input data and making informed decisions from it,
as these signals may not always be smooth and regular.
Financial data is no exception. We hope to develop various
methodologies (in particular, find the best wavelets) which will
accomplish successful signal representation before processing.

The method we pursued is motivated by one particular
paper that caught our interest, the Jothimani et al., was one
that described a wavelet-machine learning hybrid approach
to forecasting and trading [6]. However, their findings were
merely at the proof-of-concept level. So, we took it upon
ourselves to validate and expand these findings further. Thus
we proceeded, guided by both our own ideas and the research
suggestions from the authors.

I. RELATED WORK

The literature on creating automated trading algorithms
which may perform better than humans is already quite
extensive. The academic community has devoted large efforts
in the domains of financial modeling, time series forecasting,
and statistical determination of hidden economic variable. This
includes many different strategies in modeling and prediction
from stock data. only a couple of which we shall explain in
further detail below.

A. Wavelet Filtering for Time Series Signal Prediction

Currently, many methods exist which attempt robust pre-
diction of non-smooth and irregular signals. These methods
typically take in past and present information about a signal
(broken up into frames), then pass it through some predictor.
These methods have been tested vigorously and their perfor-
mances compared numerously, and are now quite good when
dealing with relatively clean time series data. However, when
input data are highly irregular, naı̈ve signal representations
tend to break down, and the aforementioned methods are not
so accurate as a result. This is a big issue with financial data
which can be extremely noisy.

In the absence of reliable methods of combating this
problem, Karkanis et al. experimented with performing the
one dimensional Discrete Wavelet Transform (DWT) on an
input signal before loading it through a processor, in their
case a feedforward neural network [7]. They hypothesized
that the DWT would better capture the high order noise and
discontinuities that exist in financial data, and improve the
MLP’s function approximation capabilities.

TABLE I
SIGNAL PREDICTION PERFORMANCE OF THE NAÏVE METHOD AND EACH

WAVELET METHOD, COMPARED. ADAPTED FROM TABLE 1 [7]

Method Wavelet SSE for
”Method 1”

SSE for
Wavelets Improvement

2 Haar 1.68 1.53 0.09
3 Coiflet 1.85 1.35 0.27
4 Daubechies 3.94 2.33 0.41
5 Symmlet 3.94 2.33 0.41
6 Vaidyanathan 1.95 1.32 0.33

In an effort to improve the baseline results, the authors chose
a select number of wavelets to use in computing the DWT for
these signal frames [7]. After the DWT was computed for M
samples, M/2 detail wavelet coefficients were selected and
normalized to create the input vectors to the MLP. Multiple
methods of windowing and MLP was used to test the error of
this wavelet-based predictor compared to the baseline. Table I
displays the results of this analysis, comparing the sum of
squared error (SSE) of the original windowing technique to
that of its corresponding wavelet transformed signal.

From the table it is evident that the wavelet methods in each
case produced much better results than the baseline, with the
Daubechies wavelet performing the best out of all six. This
wavelet method is quite clearly more robust than the original



method, as shown by its improvement on the sum of squared
error. This is supported by our understanding of wavelets, as
the detail coefficients still carry a lot of information about
the original signal. Unfortunately this method also requires
an increase in input dimensionality and samples required.
Daubechies also may not necessarily be the best wavelet to
use in all cases, and much further testing with the financial
data will be required in our case.

B. Monte Carlo Simulation with Geometric Brownian Motion

Monte Carlo simulations attempt to predict possible future
outcomes by applying a model to a large set of initial random
trials. One particular model commonly used in stimulating
stock prices is Geometric Brownian Motion, a model whose
”random walk” assumption is consistent with the weak Effi-
cient Market Hypothesis, or GBM. The formula for GBM is
given below in Equation 1; the change in stock price, ∆S, is
given by the product of its volatility and a sum of two terms.
These two terms correspond to a drift, the tendency for the
stock to drift back to its expected return µ, and a shock, a
random shock to its price.

∆S = S(µ∆t+ σε
√

∆t) (1)

After simulating many trials using this model, we can get
a distribution of possible future outcomes for the stock. From
observing a histogram of this data, however, we observe that
while our GBM model assumption was a normal distribution
of period returns, the consequent multi-period price levels are
actually log-normally distributed. This is explained by the
nature of our model. Positive price deltas tend to compound
over time; a increase in the price one day means the stock has
more to possibly gain the next. The opposite is true for price
decreases, as lower prices means less money for the stock to
potentially lose the next day.

One major problem with this approach is that the model as-
sumes stock prices are distributed normally with some known
mean and standard deviation, when in fact the distribution
has many other measurable properties, like skew and kertosis.
Additionally, it is not completely accurate to assume the weak
form of the EMH, as there have been many proven instances
of insider trading which does affect stock prices. These two
assumptions make GBM too naı̈ve to accurately predict prices
which reflect this information.

C. Discrete Wavelet Transform-Based Prediction

Machine learning is a powerful statistical tool but is ul-
timately limited by statistics itself. Asset prices tend to be
non-linear and non-stationary processes. Hence, one can argue
that training a classifier or regressor to predict market state
or asset price is a futile effort because the properties of the
underlying process will change over time. The immediate
counterargument is that one can continuously train a classifier
or regressor as new data streams into the system. This is
sometimes called online learning. Intuition, however, still
points unfavorably on direct learning of asset prices, as the
influence of past data on the system will delay the effects

of online learning. The way to overcome this is to retrain
only on data drawn after the process properties have changed.
Of course, it is difficult to determine when the process has
changed and where to draw the line when partitioning the
time series data.

Jothimani et al. [6] demonstrated that a non-stationary time
series can at times be decomposed into stationary components
by separating them in wavelet time-scale space. Therefore the
prediction performance of statistical (and nonlinear) methods
such as multilayer perceptrons may increase when used in
tandem with wavelet preprocessing. The paper showed that
wavelet-ANN or wavelet-SVR approaches were better at one-
step price prediction that an approach using Artificial Neural
Network (ANN) or Support Vector Regression (SVR) alone.
Furthermore, they demonstrated that returns on a wavelet-SVR
trading algorithm could outperform a traditional buy-and-hold.
The shortcoming of this study was that it was in essence a case
study based on a predicting and trading a single market index
using the Haar wavelet.

Fig. 1. Flow chart for the proposed hybrid model [6]

The authors propose a hybrid model for stock (the National
Stock Exchange Fifty) price prediction, combining a decompo-
sition model (Maximal Overlap Discrete Wavelet Transform,
or MODWT) and some machine learning model (either ANN
or SVR). These models will hereafter be referred to as the
MODWT-ANN and the MODWT-SVR. The original time
series data is first decomposed into some sub-series, in this
case its wavelet coefficients from the MODWT using Haar
basis. Each sub-series is then forecasted separately using the



chosen machine learning model and recombined to acquire the
final forecast. The error is calculated simply by comparing this
forecast to the original data. Final comparisons were evaluated
using the Wilcoxon-Signed Rank Test. This pipeline can be
visualized in the flow chart given in Figure 1.

The above pipeline was performed for four different mod-
els: the ANN, the SVR, and the two hybrid models where
MODWT was applied beforehand. The results showed both
the root mean squared error (RMSE) and directional accura-
cies (DA %) improved when the data was projected onto a
stationary wavelet basis in comparison to when the data was
simply fed through the machine learning model.

II. METHODS

Asset prices are both non-linear and non-stationary random
processes, meaning their probability properties will vary over
time. Therefore it is difficult to train a regressor (through
some machine learning/statistical method) which predicts asset
prices, as the probability of the underlying process keeps
changing. However, it may be possible to project these asset
prices onto a wavelet basis and decompose the random process
into stationary components based on its wavelet level, similar
to how the Discrete Wavelet Transform (DWT) outputs differ-
ent numbers of coefficients based on the level at which you
obtain them. These coefficients, as well as their derivatives,
are stationary.

Now, Jothimani et al. tested this strategy by projecting
National Stock Exchange Fifty prices onto a Haar basis [6].
Upon decomposing these prices onto stationary wavelet com-
ponents, they applied multilayer perceptrons (MLP/ANN) and
support vector regression (SVR) techniques, claiming both
that wavelet-ANN & wavelet-SVR were better at predicting
prices than non-Wavelet methods alone, and that a wavelet-
SVR trading strategy would beat out traditional buy and hold.
In light of their findings, our natural objectives were as follows

• Generalize their claims on stationarity, probability, and
prediction

• Validate whether or not (and to what degree) these
findings apply to assets in general

• Examine the effects of different wavelets on prediction
and trading

A. S&P 500 Stock Data

The dataset used in these experiments was posted by Cam
Nugent on kaggle, and includes a set of historical stock prices
from the past five years (August 13, 2012 to August 11, 2017)
for 447 companies on the S&P 500 Index. From source code
posted on Github, we could import this data into a .mat file
which included five things: four matrices corresponding to
stock prices (opening, closing, high, low) and a key labeling all
included stock names. Each matrix was of shape 1258 by 447,
where each column represented a time series vector spanning
almost five years for each individual stock. Figure 2a below
shows an example of what such a vector may look like.

B. Stock Properties

Further examination of the time series data from MOS, The
Mosaic Company, tells us a few key details about stocks.
Figure 2b shows us the distribution of the returns from
this stock, with a fitted probability density function. This is
consistent with the literature, which asserts that the return on
one point in time to the next can be modeled as independent
samples from a Gaussian distribution [1]. ”Returns” here is
defined as Xt/Xt−1 − 1

(a) Stock Price (b) Distribution

Fig. 2. Time series stock prices for The Mosaic Company (MOS), as well
as the distribution of its daily returns

An Augmented Dickey-Fuller (ADF) test suggests that
while the price is a non-stationary process (as we asserted
earlier) and mostly uncorrelated with previous price points,
the daily returns are a stationary process distributed along a
clear bell curve. A plot of the autocorrelation, shown below
in Figure 3, illustrates that, apart from the trivial max at the
origin, the price at each day does not correlate very much with
prices in the recent past.

Fig. 3. Autocorrelation of The Mosaic Company (MOS) returns

C. Artificial Neural Networks

Let us begin with the naive approach and try to predict the
price at time t+1 using the most recent 10 prices. The method
will be a single hidden layer neural network with ten hidden
nodes. The prediction is shown below in Figure 4, in red.

The prediction line seems to be an approximate single-
delayed version of the price. This result supports our intuition.
The daily return (NN-output) is independent of past returns
(NN-input) but the daily returns are also distributed along a



Fig. 4. Price prediction of Apple (AAPL) using ANN

zero-mean Gaussian distribution. Given no useful inputs, the
neural network has learned a guessing rule that predicts that
tomorrows return will be the expected value of the Gaussian
distribution, zero. Though the MSE of price and prediction
is small relative to the energy of the signal, a regressor that
always predicts that tomorrows price is the same as todays is
not useful for trading, which aims to buy low and sell high in
general.

D. Maximally Overlapping Discrete Wavelet Transform

Jothimani et al. [6] suggested improving this result by
decomposing the original non-stationary time series signal into
some stationary sub-series through projection onto a wavelet
basis. The following pipeline takes in times series stock data
and applies the aforementioned process:

1) Apply the L-level maximally overlapping discrete
wavelet transform (MODWT) on the input time series
stock data. In particular, we perform a 3-level decom-
position.

2) This results in L sets of wavelet coefficients and 1 set
of scaling coefficients, for a total of L + 1 coefficient
sets.

3) Perform the inverse MODWT on one set of coefficients.
4) This results in L + 1 signals representing a decompo-

sition of the original time series input signal. This can
be thought of as a projection of the original signal onto
different frequency bands via the wavelet transform.

Fig. 5. Projection of time series AAPL data onto db4 wavelet domain

Figure 5 above features these time series wavelet/scaling
components w1, w2, w3, s3, and s3’ (the derivative) for Apple
(AAPL) stock prices. It also displays the original time series
data on top. Figure 6 below now displays autocorrelation for
each of the aforementioned wavelet components. Here, we
can see a clear correlation between present and past values,
implying some stationarity in these components. In particular,
the wavelet coefficients are stationary. The scalar coefficient
s3 is not, but since its derivative s3’ is we may just predict
s3’ instead of s3.

Fig. 6. Correlations with respect to MODWT level 3 coefficients

With this new representation, we may address two problems
with the artificial neural net. The non-stationarity of the
original signal meant that we cannot train the regressor due to
the ever changing properties of the random processes. There
was also no point in using machine learning or statistical
methods if the future values are uncorrelated with present and
past values. By looking at the signal in terms of its frequency
bands, instead, we find that the process can be defined as a
sum of stationary and past-correlated processes. In this case,
we may apply statistical methods. This is the underlying logic
behind a wavelet-ANN predictor.

Evaluation

From our results on AAPL stock data, we may safely
assume the claims from the paper [6] were reasonable, as
we were able to successfully extract stationary components
from non-stationary input data. Now, we will attempt to
perform the same analysis on all 447 stocks, as well as with
different levels of MODWT decompositions. From here, we
attempt to to determine how many companies follow certain
stationarity/correlation requirements, thus making it viable for
wavelet-ANN analysis.

TABLE II
CORRELATIONS WITH RESPECT TO LEVEL IN THE WAVELET TRANSFORM

Level (L) Correlation (p)
1 1.0000
2 1.0000
3 1.0000
4 0.1969
5 0.0000



Each wavelet component needs to show some degree of
correlation with recent signal values and little to no correlation
with its long term past values. We define ”recent past” as
signal values not beyond a certain time x[n− T ], where T is
small. Table II displays the results of checking for stationarity
and recent correlation, using the Debauchies 4 Wavelet with
T = 10. It is a successful demonstration of the ability for the
MODWT to output stationary components in general.

E. Decision-Making Algorithm

Once the stock price prediction algorithm is sufficiently
accurate, it is possible to make an informed decision on
whether to buy, hold, or sell a certain stock. For this, we will
use the same trading algorithm as used by Jothimani et al. [6].
For each individual stock, this algorithm follows three rules:

1) If its price tomorrow is greater than its price today, BUY
the stock (if not held)

2) If its price tomorrow is smaller than its price today,
SELL the stock (if held)

3) If we have held an open long position for three days
and have been incorrect about its direction of price
movement, SELL the stock (if held)

From this, an alpha value, or excess returns on investment
compared to ”buy and hold”, is reported.

III. RESULTS

After finalizing our full pipeline for making trading deci-
sions on individual stocks, we may apply it to individual stocks
to evaluate its performance with relation to the naı̈ve buy and
hold method. In particular, we shall compute an L = 3 level
MODWT, then pass these L + 1 components into separate
ANNs, each with two hidden layers, ten nodes each, and one
output. A correlation significance threshold of 0.15 will be
used to determine whether a trading decision can be made or
not. The model will train on only the first 958 (out of 1258)
data points in the time series, and the trading algorithm will
attempt to decide to do for the last 300 data points.

First, let’s test the algorithm on just the Apple (AAPL)
stock using the Daubechies 4 wavelet for the MODWT. Fig-
ure 7 shows these individual wavelet components for AAPL.
Figure 8 below that shows our results from applying the
algorithm.

Fig. 7. Individual db4 wavelet components of Apple (AAPL)

Fig. 8. AAPL stock: (top) price prediction and (bot) resulting portfolio
value using the db4 wavelet-ANN model

While our alpha (-0.4908) was worse than the naı̈ve method,
the wavelet model did improve the mean squared error
(3.1758). This confirms that the wavelet-ANN predictor is
better at predicting than the ANN model alone, even though
the algorithm was still worse than ”buy and hold”.

Now, we attempt to apply this method to all 447 stocks using
three different wavelets for the MODWT (Haar, Daubechies 4,
Daubechies 9). Figure 9 shows, for each wavelet, a histogram
of alpha values obtained from running the algorithm on all
stocks; Table III just above it summarizes the histograms by
their mean, maximum, minimum, and standard deviation.

TABLE III
ALPHAS OBTAINED FROM USING DIFFERENT WAVELETS

Alpha Mean Max Min Std
Haar -0.4602 -0.3619 -0.5322 0.0264
db4 -0.4663 -0.3841 -0.5305 0.0216
db9 0.4147 -0.2946 -0.5081 0.0376

(a) Haar (b) Daubechies 4

(c) Daubechies 9

Fig. 9. Histograms of alphas obtained, separated by wavelet type used



IV. CONCLUSION

Evaluation

Just as we discovered with the single AAPL input signal,
the wavelet-ANN was able to decrease the mean squared error
of the predicted stock data across most of the available stocks,
signaling a clear improvement upon prediction methods using
only an ANN model. However, the alpha value obtained from
this method failed to improve upon the naı̈ve method of buy
and hold in all cases.

Comparison to Past Results

The paper in question, Jothimani et al., was able to use a
similar trading algorithm to get better returns on the National
Stock Exchange Fifty than the traditional buy and hold strat-
egy [6], a result which we were unsuccessful in replicating
here. It may just be the case that our implementation of the
algorithm was poor. We did not use Support Vector Regression
in our method, a machine learning model which the authors
proved to perform much better than the ANN which we opted
for instead.

However, it may also be possible that their results, with
respect to trading, simply do not extend to stocks, or that their
success here was simply an isolated incident due to the data
they were using. They tested their method just once in the
report, so it is not feasible for us to validate that their strategy
would work for other financial data.

Future

Given more time, it would be beneficial to test this
algorithm with much more data and many different models.
Of course, implementing a better model like an SVM would
have improved our prediction tremendously, possibly leading
to better alpha values. In fact, since the paper failed to test
with more than one type of wavelet [6] (and we exhibited
much better MSE with db9 than the haar), implementing the
SVM may yield improved results. As time was an issue for us
(running the algorithm on batch stock data would take almost
an hour), we could not test on many different correlation
thresholds or ANN structures; without a time constraint we
could tune ANN components to predict the data better.
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